Cancer immunotherapy efficacy and machine learning

被引:0
|
作者
Fang, Yuting [1 ,2 ,3 ]
Chen, Xiaozhong [1 ,2 ]
Cao, Caineng [1 ,2 ,4 ,5 ]
机构
[1] Chinese Acad Sci, Zhejiang Canc Hosp, Canc Hosp, IBMC,Dept Radiat Oncol,Univ Chinese Acad Sci, Hangzhou, Peoples R China
[2] Key Lab Head & Neck Canc Translat Res Zhejiang Pro, Hangzhou, Peoples R China
[3] Wenzhou Med Univ, Zhejiang Canc Hosp, Postgrad Training Base Alliance, Hangzhou, Zhejiang, Peoples R China
[4] Chinese Acad Sci, Zhejiang Canc Hosp, IBMC, Univ Chinese Acad Sci,Canc Hosp,Dept Radiat Oncol, 1,East Banshan Rd, Hangzhou 310022, Peoples R China
[5] Key Lab Head & Neck Canc Translat Res Zhejiang Pro, 1,East Banshan Rd, Hangzhou 310022, Peoples R China
关键词
Immunotherapy; machine learning; deep learning; cancer; omics; CELL LUNG-CANCER; RESPONSE CRITERIA; ARTIFICIAL-INTELLIGENCE; CLINICAL-RESPONSE; F-18-FDG PET/CT; PD-1; GUIDELINES; CLASSIFICATION; SENSITIVITY; EXPRESSION;
D O I
10.1080/14737140.2024.2311684
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
IntroductionImmunotherapy is one of the major breakthroughs in the treatment of cancer, and it has become a powerful clinical strategy, however, not all patients respond to immune checkpoint blockade and other immunotherapy strategies. Applying machine learning (ML) techniques to predict the efficacy of cancer immunotherapy is useful for clinical decision-making.Areas coveredApplying ML including deep learning (DL) in radiomics, pathomics, tumor microenvironment (TME) and immune-related genes analysis to predict immunotherapy efficacy. The studies in this review were searched from PubMed and ClinicalTrials.gov (January 2023).Expert opinionAn increasing number of studies indicate that ML has been applied to various aspects of oncology research, with the potential to provide more effective individualized immunotherapy strategies and enhance treatment decisions. With advances in ML technology, more efficient methods of predicting the efficacy of immunotherapy may become available in the future.
引用
收藏
页码:21 / 28
页数:8
相关论文
共 50 条
  • [1] Improving the efficacy of cancer immunotherapy
    Copier, J.
    Dalgleish, A. G.
    Britten, C. M.
    Finke, L. H.
    Gaudernack, G.
    Gnjatic, S.
    Kallen, K.
    Kiessling, R.
    Schuessler-Lenz, M.
    Singh, H.
    Talmadge, J.
    Zwierzina, H.
    Hakansson, L.
    EUROPEAN JOURNAL OF CANCER, 2009, 45 (08) : 1424 - 1431
  • [2] Fatty Acids as a Tool to Boost Cancer Immunotherapy Efficacy
    Westheim, Annemarie J. F.
    Stoffels, Lara M.
    Dubois, Ludwig J.
    van Bergenhenegouwen, Jeroen
    van Helvoort, Ardy
    Langen, Ramon C. J.
    Shiri-Sverdlov, Ronit
    Theys, Jan
    FRONTIERS IN NUTRITION, 2022, 9
  • [3] Advances in artificial intelligence to predict cancer immunotherapy efficacy
    Xie, Jindong
    Luo, Xiyuan
    Deng, Xinpei
    Tang, Yuhui
    Tian, Wenwen
    Cheng, Hui
    Zhang, Junsheng
    Zou, Yutian
    Guo, Zhixing
    Xie, Xiaoming
    FRONTIERS IN IMMUNOLOGY, 2023, 13
  • [4] Using machine learning and RNA to enhance the efficacy of anti-tumor immunotherapy
    Wei, Yunfang
    Su, Yingzhen
    EVOLUTIONARY INTELLIGENCE, 2023, 16 (05) : 1555 - 1563
  • [5] The future of skin cancer diagnosis: a comprehensive systematic literature review of machine learning and deep learning models
    Adamu, Shamsuddeen
    Alhussian, Hitham
    Aziz, Norshakirah
    Abdulkadir, Said Jadid
    Alwadin, Ayed
    Imam, Abdullahi Abubakar
    Abdullahi, Mujaheed
    Garba, Aliyu
    Saidu, Yahaya
    COGENT ENGINEERING, 2024, 11 (01):
  • [6] Predicting response to cancer immunotherapy using noninvasive radiomic biomarkers
    Trebeschi, S.
    Drago, S. G.
    Birkbak, N. J.
    Kurilova, I
    Calin, A. M.
    Pizzi, A. Delli
    Lalezari, F.
    Lambregts, D. M. J.
    Rohaan, M. W.
    Parmar, C.
    Rozeman, E. A.
    Hartemink, K. J.
    Swanton, C.
    Haanen, J. B. A. G.
    Blank, C. U.
    Smit, E. F.
    Beets-Tan, R. G. H.
    Aerts, H. J. W. L.
    ANNALS OF ONCOLOGY, 2019, 30 (06) : 998 - 1004
  • [7] Tumor Microenvironment Evaluation for Gastrointestinal Cancer in the Era of Immunotherapy and Machine Learning
    Ye, Zilan
    Zeng, Dongqiang
    Zhou, Rui
    Shi, Min
    Liao, Wangjun
    FRONTIERS IN IMMUNOLOGY, 2022, 13
  • [8] Machine Learning for Endometrial Cancer Prediction and Prognostication
    Bhardwaj, Vipul
    Sharma, Arundhiti
    Parambath, Snijesh Valiya
    Gul, Ijaz
    Zhang, Xi
    Lobie, Peter E.
    Qin, Peiwu
    Pandey, Vijay
    FRONTIERS IN ONCOLOGY, 2022, 12
  • [9] Machine learning developed an intratumor heterogeneity signature for predicting clinical outcome and immunotherapy benefit in bladder cancer
    Chen, Cheng
    Zhang, Jun
    Liu, Xiaoshuang
    Zhuang, Qianfeng
    Lu, Hao
    Hou, Jianquan
    TRANSLATIONAL ANDROLOGY AND UROLOGY, 2024, 13 (07) : 1104 - 1117
  • [10] Machine Learning for Prediction of Immunotherapy Efficacy in Non-Small Cell Lung Cancer from Simple Clinical and Biological Data
    Benzekry, Sebastien
    Grangeon, Mathieu
    Karlsen, Melanie
    Alexa, Maria
    Bicalho-Frazeto, Isabella
    Chaleat, Solene
    Tomasini, Pascale
    Barbolosi, Dominique
    Barlesi, Fabrice
    Greillier, Laurent
    CANCERS, 2021, 13 (24)