Synergistic effect of lithium salt and trimethyl phosphate for enhanced interface stability in solid-state lithium metal batteries

被引:4
作者
Liu, Yali [1 ,2 ]
Hou, Wenqiang [1 ,2 ]
Zhang, Kai [1 ,2 ]
Zhang, Jintao [1 ,2 ]
Ding, Xiangdong [3 ]
Xu, Youlong [1 ,2 ]
机构
[1] Xi An Jiao Tong Univ, Key Lab, Minist Educ, Elect Mat Res Lab, Xian 710049, Peoples R China
[2] Xi An Jiao Tong Univ, Shaanxi Engn Res Ctr Adv Energy Mat & Devices, 28 West Xianning Rd, Xian 710049, Peoples R China
[3] Xi An Jiao Tong Univ, State Key Lab Mech Behav Mat, Xian 710049, Peoples R China
关键词
Trimethyl phosphate; Lithium difluoro(oxalate)borate; Synergistic effect; High-rate performance; Non-flammable; Solid electrolyte interphase; POLYMER ELECTROLYTES; VOLTAGE; LIDFOB;
D O I
10.1016/j.jpowsour.2023.233943
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Polymer electrolytes hold significant potential in solid-state battery applications due to their high flexibility and scalable manufacturing capabilities. However, it is still necessary to address the safety problems and poor rate performance. Herein, the synergistic effect of trimethyl phosphate (TMP) and lithium difluoro(oxalate)borate (LiDFOB) in the in-situ fabricated poly-butyl acrylate (PBA) quasi-solid electrolyte (QSE) is investigated. The non-flammable additive, TMP, has proven to combine with LiDFOB in the electrolytes as TMP-DFOB- pair. The TMP-DFOB- pair can promote the formation of a B-O, B-F, LiF, and Li3P containing solid electrolyte interphase (SEI) on the lithium anode, enabling stable lithium striping-plating processes. Besides, it enhances the formation of a LiF-rich cathode electrolyte interphase (CEI) and promotes intimate contact between the cathode active materials and PBA-QSE, thereby enhancing the rate performance. Therefore, the Li/PBA-LiDFOB-0.1TMP/ LiFePO4 (LFP) cell delivers discharge capacity of 132 mAh g-1 with a remarkable capacity retention of 95.68 % after 500 cycles at 1 C. Even at 4 C, the discharge capacity reaches 92.1 mAh g-1. This non-flammable PBALiDFOB-TMP QSE exhibits potential application in high energy density systems. Furthermore, this work provides new insights into strategies for improving rate performance from lithium salts and functional additives aspects.
引用
收藏
页数:12
相关论文
共 50 条
[41]   Asymmetric Trihalogenated Aromatic Lithium Salt Induced Lithium Halide Rich Interface for Stable Cycling of All-Solid-State Lithium Batteries [J].
Yan, Shuaishuai ;
Liu, Fengxiang ;
Ou, Yu ;
Zhou, Hang-Yu ;
Lu, Yang ;
Hou, Wenhui ;
Cao, Qingbin ;
Liu, Hao ;
Zhou, Pan ;
Liu, Kai .
ACS NANO, 2023, 17 (19) :19398-19409
[42]   Super-conductive plastic crystal-based materials as the interface layers for solid-state lithium metal batteries [J].
Wu, Jie ;
Gao, Jingxiong ;
Bao, Luri ;
Wu, Yongming ;
Zhu, Lei ;
Zhao, Jinbao ;
Xue, Mei ;
Tang, Weiping .
FUNCTIONAL MATERIALS LETTERS, 2021, 14 (03)
[43]   Identifying ultrathin dielectric nanosheets induced interface polarization for high-performance solid-state lithium metal batteries [J].
Yang, Li ;
Li, Baowen ;
Liu, Hexing ;
Zhang, Hong ;
Cheng, Yu ;
Li, Qi ;
Mai, Liqiang ;
Xu, Lin .
ENERGY STORAGE MATERIALS, 2024, 70
[44]   Efficient Ion Migration and Stable Interface Chemistry of PVDF-Based Electrolytes for Solid-State Lithium Metal Batteries [J].
Fan, Kaibo ;
Wang, Biao ;
Chen, Jie ;
Cao, Kai ;
Huang, Haozhong ;
Zhu, Zhongheng ;
Zhang, Qichen ;
Fu, Xiaowu ;
Sun, Ling ;
Yuan, Jiren ;
Zhao, Yong ;
Hu, Zhengguang ;
Wang, Li .
SMALL, 2025,
[45]   A review on "Growth mechanisms and optimization strategies for the interface state of solid-state lithium-ion batteries" [J].
Liu, Guanzuo ;
Yuan, Zhuo ;
Deng, Yufeng ;
Yu, Xinbiao ;
Huang, Xinzhe ;
Zheng, Guoxu ;
Li, Yinan .
INTERNATIONAL JOURNAL OF APPLIED CERAMIC TECHNOLOGY, 2024, 21 (01) :5-43
[46]   Crystalline Porous Materials-based Solid-State Electrolytes for Lithium Metal Batteries [J].
Chen, Luyi ;
Ding, Kui ;
Li, Kang ;
Li, Zhongliang ;
Zhang, Xueliang ;
Zheng, Qifeng ;
Cai, Yue-Peng ;
Lan, Ya-Qian .
ENERGYCHEM, 2022, 4 (03)
[47]   Critical Current Density in Solid-State Lithium Metal Batteries: Mechanism, Influences, and Strategies [J].
Lu, Yang ;
Zhao, Chen-Zi ;
Yuan, Hong ;
Cheng, Xin-Bing ;
Huang, Jia-Qi ;
Zhang, Qiang .
ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (18)
[48]   All Solid-State Lithium Batteries Assembled with Hybrid Solid Electrolytes [J].
Jung, Yun-Chae ;
Lee, Sang-Min ;
Choi, Jeong-Hee ;
Jang, Seung Soon ;
Kim, Dong-Won .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (04) :A704-A710
[49]   Cathode-electrolyte integrating strategy enabling solid-state lithium metal battery with enhanced cycle stability [J].
Li, Jingyi ;
Wang, Zhenyu ;
Zhou, Zhiwei ;
Li, Cong ;
He, Zhenjiang ;
Zheng, Junchao ;
Li, Yunjiao ;
Mao, Jing ;
Dai, Kehua ;
Yan, Cheng .
JOURNAL OF POWER SOURCES, 2022, 544
[50]   Ferroelectric BaTiO3 Regulating the Local Electric Field for Interfacial Stability in Solid-State Lithium Metal Batteries [J].
Wu, Lingqiao ;
Lv, Haoran ;
Zhang, Rui ;
Ding, Peipei ;
Tang, Mingxue ;
Liu, Shiqi ;
Wang, Lihang ;
Liu, Fangzheng ;
Guo, Xianwei ;
Yu, Haijun .
ACS NANO, 2024, 18 (07) :5498-5509