BAYESIAN INFERENCE AND DYNAMIC PREDICTION FOR MULTIVARIATE LONGITUDINAL AND SURVIVAL DATA

被引:0
作者
Zou, Haotian [1 ]
Zeng, Donglin [1 ]
Xiao, Luo [2 ]
Luo, Sheng [3 ]
机构
[1] Univ N Carolina, Dept Biostat, Chapel Hill, NC 27599 USA
[2] North Carolina State Univ, Dept Stat, Raleigh, NC USA
[3] Duke Univ, Dept Biostat & Bioinformat, Durham, NC USA
关键词
Alzheimer's disease; multivariate longitudinal data; functional mixed model; joint model; Bayesian method; dynamic prediction; MODEL; EVENT; ASSOCIATION; REGRESSION; SHRINKAGE; SELECTION; RISK;
D O I
10.1214/23-AOAS1733
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Alzheimer's disease (AD) is a complex neurological disorder impairing multiple domains such as cognition and daily functions. To better understand the disease and its progression, many AD research studies collect multiple longitudinal outcomes that are strongly predictive of the onset of AD dementia. We propose a joint model based on a multivariate functional mixed model framework (referred to as MFMM-JM) that simultaneously models the multiple longitudinal outcomes and the time to dementia onset. We develop six functional forms to fully investigate the complex association between longitudinal outcomes and dementia onset. Moreover, we use the Bayesian methods for statistical inference and develop a dynamic prediction framework that provides accurate personalized predictions of disease progressions based on new subject-specific data. We apply the proposed MFMM-JM to two large ongoing AD studies, the Alzheimer's Disease Neuroimaging Initiative (ADNI) and National Alzheimer's Coordinating Center (NACC), and identify the functional forms with the best predictive performance. Our method is also validated by extensive simulation studies with five settings.
引用
收藏
页码:2574 / 2595
页数:22
相关论文
共 50 条
[1]   Bayesian shrinkage approach for a joint model of longitudinal and survival outcomes assuming different association structures [J].
Andrinopoulou, Eleni-Rosalina ;
Rizopoulos, Dimitris .
STATISTICS IN MEDICINE, 2016, 35 (26) :4813-4823
[2]   Bayesian Random Segmentation Models to Identify Shared Copy Number Aberrations for Array CGH Data [J].
Baladandayuthapani, Veerabhadran ;
Ji, Yuan ;
Talluri, Rajesh ;
Nieto-Barajas, Luis E. ;
Morris, Jeffrey S. .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2010, 105 (492) :1358-1375
[3]   Alzheimer's disease [J].
Ballard, Clive ;
Gauthier, Serge ;
Corbett, Anne ;
Brayne, Carol ;
Aarsland, Dag ;
Jones, Emma .
LANCET, 2011, 377 (9770) :1019-1031
[4]   Version 3 of the National Alzheimer's Coordinating Center's Uniform Data Set [J].
Besser, Lilah ;
Kukull, Walter ;
Knopman, David S. ;
Chui, Helena ;
Galasko, Douglas ;
Weintraub, Sandra ;
Jicha, Gregory ;
Carlsson, Cynthia ;
Burns, Jeffrey ;
Quinn, Joseph ;
Sweet, Robert A. ;
Rascovsky, Katya ;
Teylan, Merilee ;
Beekly, Duane ;
Thomas, George ;
Bollenbeck, Mark ;
Monsell, Sarah ;
Mock, Charles ;
Zhou, Xiao Hua ;
Thomas, Nicole ;
Robichaud, Elizabeth ;
Dean, Margaret ;
Hubbard, Janene ;
Jacka, Mary ;
Schwabe-Fry, Kristen ;
Wu, Joylee ;
Phelps, Creighton ;
Morris, John C. .
ALZHEIMER DISEASE & ASSOCIATED DISORDERS, 2018, 32 (04) :351-358
[5]   Comprehensive Review on Alzheimer's Disease: Causes and Treatment [J].
Breijyeh, Zeinab ;
Karaman, Rafik .
MOLECULES, 2020, 25 (24)
[6]   ASSESSING THE ASSOCIATION BETWEEN TRENDS IN A BIOMARKER AND RISK OF EVENT WITH AN APPLICATION IN PEDIATRIC HIV/AIDS [J].
Brown, Elizabeth R. .
ANNALS OF APPLIED STATISTICS, 2009, 3 (03) :1163-1182
[7]   The horseshoe estimator for sparse signals [J].
Carvalho, Carlos M. ;
Polson, Nicholas G. ;
Scott, James G. .
BIOMETRIKA, 2010, 97 (02) :465-480
[8]   GENE DOSE OF APOLIPOPROTEIN-E TYPE-4 ALLELE AND THE RISK OF ALZHEIMERS-DISEASE IN LATE-ONSET FAMILIES [J].
CORDER, EH ;
SAUNDERS, AM ;
STRITTMATTER, WJ ;
SCHMECHEL, DE ;
GASKELL, PC ;
SMALL, GW ;
ROSES, AD ;
HAINES, JL ;
PERICAKVANCE, MA .
SCIENCE, 1993, 261 (5123) :921-923
[9]   MULTILEVEL FUNCTIONAL PRINCIPAL COMPONENT ANALYSIS [J].
Di, Chong-Zhi ;
Crainiceanu, Ciprian M. ;
Caffo, Brian S. ;
Punjabi, Naresh M. .
ANNALS OF APPLIED STATISTICS, 2009, 3 (01) :458-488
[10]   Frailty survival model analysis of the national deceased donor kidney transplant dataset using Poisson variance structures [J].
Feng, SB ;
Wolfe, RA ;
Port, FK .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2005, 100 (471) :728-735