Enablers and challenges of spatial omics, a melting pot of technologies

被引:14
作者
Alexandrov, Theodore [1 ,2 ,3 ]
Saez-Rodriguez, Julio [2 ,4 ,5 ]
Saka, Sinem K. [6 ]
机构
[1] European Mol Biol Lab, Struct & Computat Biol Unit, Heidelberg, Germany
[2] European Mol Biol Lab, Mol Med Partnership Unit, Heidelberg, Germany
[3] BioInnovat Inst, Copenhagen, Denmark
[4] Heidelberg Univ, Fac Med, Heidelberg, Germany
[5] Heidelberg Univ, Heidelberg Univ Hosp, Inst Computat Biomed, Heidelberg, Germany
[6] European Mol Biol Lab, Genome Biol Unit, Heidelberg, Germany
基金
欧洲研究理事会;
关键词
genomics; metabolomics; proteomics; spatial omics; transcriptomics; IMAGING MASS-SPECTROMETRY; HYBRIDIZATION CHAIN-REACTION; GENOME-WIDE EXPRESSION; IN-SITU; GENE-EXPRESSION; TISSUE-SECTIONS; SINGLE CELLS; RNA-ANALYSIS; DESIGN; RESOLUTION;
D O I
10.15252/msb.202110571
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Spatial omics has emerged as a rapidly growing and fruitful field with hundreds of publications presenting novel methods for obtaining spatially resolved information for any omics data type on spatial scales ranging from subcellular to organismal. From a technology development perspective, spatial omics is a highly interdisciplinary field that integrates imaging and omics, spatial and molecular analyses, sequencing and mass spectrometry, and image analysis and bioinformatics. The emergence of this field has not only opened a window into spatial biology, but also created multiple novel opportunities, questions, and challenges for method developers. Here, we provide the perspective of technology developers on what makes the spatial omics field unique. After providing a brief overview of the state of the art, we discuss technological enablers and challenges and present our vision about the future applications and impact of this melting pot. This Review discusses the spatial omics field from the point of view of technology developers. It provides an overview of the state of the art, discusses technological enablers and challenges and presents a vision about the future applications and impact of spatial omics technologies.image
引用
收藏
页数:16
相关论文
共 235 条
[21]  
Biancalani T, 2020, bioRxiv, DOI [10.1101/2020.08.29.272831, 10.1101/2020.08.29.272831, DOI 10.1101/2020.08.29.272831]
[22]   Deep learning and alignment of spatially resolved single-cell transcriptomes with Tangram [J].
Biancalani, Tommaso ;
Scalia, Gabriele ;
Buffoni, Lorenzo ;
Avasthi, Raghav ;
Lu, Ziqing ;
Sanger, Aman ;
Tokcan, Neriman ;
Vanderburg, Charles R. ;
Segerstolpe, Asa ;
Zhang, Meng ;
Avraham-Davidi, Inbal ;
Vickovic, Sanja ;
Nitzan, Mor ;
Ma, Sai ;
Subramanian, Ayshwarya ;
Lipinski, Michal ;
Buenrostro, Jason ;
Brown, Nik Bear ;
Fanelli, Duccio ;
Zhuang, Xiaowei ;
Macosko, Evan Z. ;
Regev, Aviv .
NATURE METHODS, 2021, 18 (11) :1352-+
[23]   Scalable in situ single-cell profiling by electrophoretic capture of mRNA using EEL FISH [J].
Borm, Lars E. ;
Albiach, Alejandro Mossi ;
Mannens, Camiel C. A. ;
Janusauskas, Jokubas ;
Ozgun, Ceren ;
Fernandez-Garcia, David ;
Hodge, Rebecca ;
Castillo, Francisca ;
Hedin, Charlotte R. H. ;
Villablanca, Eduardo J. ;
Uhlen, Per ;
Lein, Ed S. ;
Codeluppi, Simone ;
Linnarsson, Sten .
NATURE BIOTECHNOLOGY, 2023, 41 (02) :222-+
[24]   Molecular cartography of the human skin surface in 3D [J].
Bouslimani, Amina ;
Porto, Carla ;
Rath, Christopher M. ;
Wang, Mingxun ;
Guo, Yurong ;
Gonzalez, Antonio ;
Berg-Lyon, Donna ;
Ackermann, Gail ;
Christensen, Gitte Julie Moeller ;
Nakatsuji, Teruaki ;
Zhang, Lingjuan ;
Borkowski, Andrew W. ;
Meehan, Michael J. ;
Dorrestein, Kathleen ;
Gallo, Richard L. ;
Bandeira, Nuno ;
Knight, Rob ;
Alexandrov, Theodore ;
Dorrestein, Pieter C. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2015, 112 (17) :E2120-E2129
[25]   Advances in mass spectrometry imaging enabling observation of localised lipid biochemistry within tissues [J].
Bowman, Andrew P. ;
Heeren, Ron M. A. ;
Ellis, Shane R. .
TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 2019, 120
[26]   Spatially resolved analysis of FFPE tissue proteomes by quantitative mass spectrometry [J].
Buczak, Katarzyna ;
Kirkpatrick, Joanna M. ;
Truckenmueller, Felicia ;
Santinha, Deolinda ;
Ferreira, Lino ;
Roessler, Stephanie ;
Singer, Stephan ;
Beck, Martin ;
Ori, Alessandro .
NATURE PROTOCOLS, 2020, 15 (09) :2956-2979
[27]  
Buenrostro JD, 2013, NAT METHODS, V10, P1213, DOI [10.1038/NMETH.2688, 10.1038/nmeth.2688]
[28]   Robust decomposition of cell type mixtures in spatial transcriptomics [J].
Cable, Dylan M. ;
Murray, Evan ;
Zou, Luli S. ;
Goeva, Aleksandrina ;
Macosko, Evan Z. ;
Chen, Fei ;
Irizarry, Rafael A. .
NATURE BIOTECHNOLOGY, 2022, 40 (04) :517-+
[29]   Screening cell-cell communication in spatial transcriptomics via collective optimal transport [J].
Cang, Zixuan ;
Zhao, Yanxiang ;
Almet, Axel A. A. ;
Stabell, Adam ;
Ramos, Raul ;
Plikus, Maksim V. V. ;
Atwood, Scott X. X. ;
Nie, Qing .
NATURE METHODS, 2023, 20 (02) :218-+
[30]   Inferring spatial and signaling relationships between cells from single cell transcriptomic data [J].
Cang, Zixuan ;
Nie, Qing .
NATURE COMMUNICATIONS, 2020, 11 (01)