1D transition-metal dichalcogenides/carbon core-shell composites for the hydrogen evolution reaction

被引:12
|
作者
Dutta, Asmita [1 ]
Breuer, Ortal [2 ]
Krishnappa, Manjunath [3 ]
Minnes, Refael [4 ]
Zak, Alla [3 ]
Borenstein, Arie [1 ]
机构
[1] Ariel Univ, Dept Chem Sci, Ariel, Israel
[2] Bar Ilan Univ, Dept Chem, Ramat Gan, Israel
[3] Holon Inst Technol, Fac Sci, Holon, Israel
[4] Ariel Univ, Dept Phys, Ariel, Israel
关键词
WS2; NANOTUBES; EFFICIENT ELECTROCATALYST; HYBRID CATALYSTS; NANOSHEETS; GRAPHENE; PERFORMANCE; MOS2; NANOPARTICLES; FRAMEWORK; NITROGEN;
D O I
10.1039/d3ta04416e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
2D transition metal dichalcogenides (TMDCs) have recently been proposed as an excellent catalytic substitute for noble metals in the hydrogen evolution reaction (HER). When assembled in a 1D nanotube configuration, TMDCs show enhanced performances originating from the curved lattice strain and nanosize. However, WS2 nanotubes (NTs) have minor electron mobility and low number of active edge sites, which hinder their effective use in electrocatalytic reactions. In this work, we present the synthesis of the core-shell structure of WS2 NTs coated with carbon. WS2 NTs were coated with nitrogen-doped graphitic carbon in three steps. After physical adsorption and annealing, excessive carbon was removed by CO2 gas, which acts as a mild oxidizer. Finally, recrystallization of the carbon coating at 800 degrees C was done by thermal annealing in the presence of N2. Products after each reaction step were chemically analyzed. Following the recrystallization, the heterostructure WS2 nanotubes/carbon showed significantly improved HER performance, exhibiting an overpotential of 172 mV compared to 540 mV for the uncoated NTs. The improved activity was confirmed in different pH electrolytes. Moreover, the carbon coating significantly improved the electrochemical stability of the WS2 by protecting it upon prolonged reductive operation. The formation of carbon-coated WS2 NTs composite material provides a promising way to obtain a pH-universal, cost-effective electrocatalyst for energy conversion. 2D transition metal dichalcogenides (TMDCs) have recently been proposed as an excellent catalytic substitute for noble metals in the hydrogen evolution reaction (HER).
引用
收藏
页码:21806 / 21816
页数:11
相关论文
共 50 条
  • [1] Research progress of transition-metal dichalcogenides for the hydrogen evolution reaction
    Deng, Qibo
    Li, Zhiwei
    Huang, Rui
    Li, Pengfei
    Gomaa, Hassanien
    Wu, Shuai
    An, Cuihua
    Hu, Ning
    JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (45) : 24434 - 24453
  • [2] Insights into the Hydrogen Evolution Reaction on 2D Transition-Metal Dichalcogenides
    Wang, Zhenbin
    Tang, Michael T.
    Cao, Ang
    Chan, Karen
    Norskov, Jens K.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2022, 126 (11) : 5151 - 5158
  • [3] Plasma-treated 1D transition metal dichalcogenides for efficient electrocatalytic hydrogen evolution reaction
    Dutta, Asmita
    Krishnappa, Manjunath
    Porat, Hani
    Lavi, Ronit
    Lal, Aneena
    Yadav, Manish Kumar
    Mandic, Vilko
    Makrinich, Gennady
    Laikhtman, Alex
    Zak, Alla
    Borenstein, Arie
    JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (37) : 25176 - 25185
  • [4] From Monolayers to Nanotubes: Toward Catalytic Transition-Metal Dichalcogenides for Hydrogen Evolution Reaction
    Cardoso, Gunther Luft
    Piquini, Paulo Cesar
    Ahuja, Rajeev
    ENERGY & FUELS, 2021, 35 (07) : 6282 - 6288
  • [5] 1T Phase Transition Metal Dichalcogenides for Hydrogen Evolution Reaction
    Chang, Liang
    Sun, Zhuxing
    Hu, Yun Hang
    ELECTROCHEMICAL ENERGY REVIEWS, 2021, 4 (02) : 194 - 218
  • [6] Recent advances in ternary transition metal dichalcogenides for electrocatalytic hydrogen evolution reaction
    Mehta, Samriti
    Thakur, Rajni
    Rani, Shwetha
    Nagaraja, B. M.
    Mehla, Sunil
    Kainthla, Itika
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 82 : 1061 - 1080
  • [7] The mechanism of hydrogen adsorption on transition metal dichalcogenides as hydrogen evolution reaction catalyst
    Wang, Jinsong
    Liu, Jia
    Zhang, Bao
    Ji, Xiao
    Xu, Kui
    Chen, Chi
    Miao, Ling
    Jiang, Jianjun
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2017, 19 (15) : 10125 - 10132
  • [8] Efficient hydrogen evolution in transition metal dichalcogenides via a simple one-step hydrazine reaction
    Cummins, Dustin R.
    Martinez, Ulises
    Sherehiy, Andriy
    Kappera, Rajesh
    Martinez-Garcia, Alejandro
    Schulze, Roland K.
    Jasinski, Jacek
    Zhang, Jing
    Gupta, Ram K.
    Lou, Jun
    Chhowalla, Manish
    Sumanasekera, Gamini
    Mohite, Aditya D.
    Sunkara, Mahendra K.
    Gupta, Gautam
    NATURE COMMUNICATIONS, 2016, 7
  • [9] Recent advances in layered transition metal dichalcogenides for hydrogen evolution reaction
    Yang, Jieun
    Shin, Hyeon Suk
    JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (17) : 5979 - 5985
  • [10] MoS2 supported on MOF-derived carbon with core-shell structure as efficient electrocatalysts for hydrogen evolution reaction
    Feng, Jianhui
    Zhou, Hu
    Wang, Jinpei
    Bian, Ting
    Shao, Jinxiao
    Yuan, Aihua
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (45) : 20538 - 20545