Deep Reinforcement Learning Based Cooperative Partial Task Offloading and Resource Allocation for IIoT Applications

被引:20
|
作者
Zhang, Fan [1 ]
Han, Guangjie [1 ]
Liu, Li [1 ]
Martinez-Garcia, Miguel [2 ]
Peng, Yan [3 ]
机构
[1] Hohai Univ, Coll Internet Things Engn, Changzhou 213022, Peoples R China
[2] Loughborough Univ, Dept Aeronaut & Automot Engn, Loughborough LE113TU, England
[3] Shanghai Univ, Artificial Intelligence Inst, Shanghai 200444, Peoples R China
来源
IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING | 2023年 / 10卷 / 05期
基金
中国国家自然科学基金;
关键词
Task analysis; Industrial Internet of Things; Resource management; Optimization; Costs; Edge computing; Delays; Cooperative partial offloading; IIoT; improved soft actor-critic; resource allocation; INDUSTRIAL INTERNET; EDGE; THINGS; ALGORITHM;
D O I
10.1109/TNSE.2022.3167949
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The Industrial Internet of Things (IIoT) has been regarded as one of the pillars supporting the conceptual paradigm of the Industry 4.0. Compared with traditional cloud computing schemes, edge computing provides an effective solution towards easing congestion in backhaul links and core networks, while meeting real-time, security and reliability demands of compute-intensive and delay-sensitive IIoT applications. Many existing studies only optimize end-edge-cloud cooperative task offloading, and neglect the optimization of the communication and computation resource allocation. In this paper, the cooperative partial task offloading and resource allocation (CPTORA) framework is designed, which jointly considers cooperation among various IIoT devices, local edge computing servers (ECSs), non-local ECSs, and cloud computing servers - for balancing the workload of the ECSs and increasing the resource utilization rate. Then, considering the complex dynamics and unpredictability in IIoT environments, the joint optimization problem is modeled as a constrained Markov decision process. Furthermore, we propose an improved soft actor-critic-based CPTORA (ISAC-CPTORA) algorithm, able to make task offloading and resource allocation decisions for each IIoT device. This algorithm innovatively introduces the idea of distributional reinforcement learning to the soft actor-critic, which can effectively reduce Q-value overestimations or underestimations. Meanwhile, this algorithm employs the prioritized experience replay to enhance its learning efficiency. Extensive laboratory experiments indicate that our CPTORA framework and ISAC-CPTORA algorithm efficiently decrease the total system costs (i.e., latency costs and energy costs), in contrast to various baseline frameworks and algorithms.
引用
收藏
页码:2991 / 3006
页数:16
相关论文
共 50 条
  • [41] Multi-agent deep reinforcement learning-based partial offloading and resource allocation in vehicular edge computing networks
    Xue, Jianbin
    Wang, Luyao
    Yu, Qingda
    Mao, Peipei
    COMPUTER COMMUNICATIONS, 2025, 234
  • [42] Joint Optimization for MEC Computation Offloading and Resource Allocation in IoV Based on Deep Reinforcement Learning
    Wang, Jian
    Wang, Yancong
    Ke, Hongchang
    MOBILE INFORMATION SYSTEMS, 2022, 2022
  • [43] Large-Scale Cooperative Task Offloading and Resource Allocation in Heterogeneous MEC Systems via Multiagent Reinforcement Learning
    Gao, Zhen
    Yang, Lei
    Dai, Yu
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (02) : 2303 - 2321
  • [44] Deep Reinforcement Learning for Offloading and Resource Allocation in Vehicle Edge Computing and Networks
    Liu, Yi
    Yu, Huimin
    Xie, Shengli
    Zhang, Yan
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2019, 68 (11) : 11158 - 11168
  • [45] Computational Offloading and Resource Allocation for IoT applications using Decision Tree based Reinforcement Learning
    Walia, Guneet Kaur
    Kumar, Mohit
    AD HOC NETWORKS, 2025, 170
  • [46] Task Offloading and Resource Allocation in IoT Based Mobile Edge Computing Using Deep Learning
    Abdullaev, Ilyos
    Prodanova, Natalia
    Bhaskar, K. Aruna
    Lydia, E. Laxmi
    Kadry, Seifedine
    Kim, Jungeun
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 76 (02): : 1463 - 1477
  • [47] Task Offloading Based-on Deep Reinforcement Learning for Microgrid
    Wang, Ye
    Jin, Xianzhi
    Xu, Ren
    Shao, Wenyi
    Lin, Fei
    2022 IEEE 10TH INTERNATIONAL CONFERENCE ON INFORMATION, COMMUNICATION AND NETWORKS (ICICN 2022), 2022, : 281 - 285
  • [48] Research on Dependent Task Offloading Based on Deep Reinforcement Learning
    Zhu, Qianwen
    Guo, Juan
    2024 6TH INTERNATIONAL CONFERENCE ON NATURAL LANGUAGE PROCESSING, ICNLP 2024, 2024, : 705 - 709
  • [49] Heterogeneous Task Offloading and Resource Allocations via Deep Recurrent Reinforcement Learning in Partial Observable Multifog Networks
    Baek, Jungyeon
    Kaddoum, Georges
    IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (02) : 1041 - 1056
  • [50] Deep Reinforcement Learning Based Resource Management for DNN Inference in IIoT
    Zhang, Weiting
    Yang, Dong
    Peng, Haixia
    Wu, Wen
    Quan, Wei
    Zhang, Hongke
    Shen, Xuemin
    2020 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2020,