SparsePose: Sparse-View Camera Pose Regression and Refinement

被引:12
|
作者
Sinha, Samarth [1 ]
Zhang, Jason Y. [2 ]
Tagliasacchi, Andrea [1 ,3 ,4 ]
Gilitschenski, Igor [1 ]
Lindell, David B. [1 ,5 ]
机构
[1] Univ Toronto, Toronto, ON, Canada
[2] Carnegie Mellon Univ, Pittsburgh, PA USA
[3] Simon Fraser Univ, Burnaby, BC, Canada
[4] Google, Toronto, ON, Canada
[5] Vector Inst, Toronto, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1109/CVPR52729.2023.02045
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Camera pose estimation is a key step in standard 3D reconstruction pipelines that operate on a dense set of images of a single object or scene. However, methods for pose estimation often fail when only a few images are available because they rely on the ability to robustly identify and match visual features between image pairs. While these methods can work robustly with dense camera views, capturing a large set of images can be time-consuming or impractical. We propose SparsePose for recovering accurate camera poses given a sparse set of wide-baseline images (fewer than 10). The method learns to regress initial camera poses and then iteratively refine them after training on a large-scale dataset of objects (Co3D: Common Objects in 3D). SparsePose significantly outperforms conventional and learning-based baselines in recovering accurate camera rotations and translations. We also demonstrate our pipeline for high-fidelity 3D reconstruction using only 5-9 images of an object. Project webpage: https://sparsepose.github.io/
引用
收藏
页码:21349 / 21359
页数:11
相关论文
共 50 条
  • [1] ADen: Adaptive Density Representations for Sparse-View Camera Pose Estimation
    Tang, Hao
    Wang, Weiyao
    Gleize, Pierre
    Feiszli, Matt
    COMPUTER VISION - ECCV 2024, PT LXII, 2025, 15120 : 111 - 128
  • [2] Adversarial Networks for Camera Pose Regression and Refinement
    Bui, Mai
    Baur, Christoph
    Navab, Nassir
    Ilic, Slobodan
    Albarqouni, Shadi
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2019, : 3778 - 3787
  • [3] Deep Embedding-Attention-Refinement for Sparse-View CT Reconstruction
    Wu, Weiwen
    Guo, Xiaodong
    Chen, Yang
    Wang, Shaoyu
    Chen, Jun
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [4] Deep Embedding-Attention-Refinement for Sparse-View CT Reconstruction
    Wu, Weiwen
    Guo, Xiaodong
    Chen, Yang
    Wang, Shaoyu
    Chen, Jun
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [5] Deep Embedding-Attention-Refinement for Sparse-View CT Reconstruction
    Wu, Weiwen
    Guo, Xiaodong
    Chen, Yang
    Wang, Shaoyu
    Chen, Jun
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [6] Multi-Pose Fusion for Sparse-View CT Reconstruction Using Consensus Equilibrium
    Yang, Diyu
    Kemp, Craig A. J.
    Buzzard, Gregery T.
    Bouman, Charles A.
    2022 58TH ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING (ALLERTON), 2022,
  • [7] Stage-by-Stage Wavelet Optimization Refinement Diffusion Model for Sparse-View CT Reconstruction
    Xu, Kai
    Lu, Shiyu
    Huang, Bin
    Wu, Weiwen
    Liu, Qiegen
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2024, 43 (10) : 3412 - 3424
  • [8] A Construct-Optimize Approach to Sparse View Synthesis without Camera Pose
    Jiang, Kaiwen
    Fu, Yang
    Varma, Mukund T.
    Belhe, Yash
    Wang, Xiaolong
    Su, Hao
    PROCEEDINGS OF SIGGRAPH 2024 CONFERENCE PAPERS, 2024,
  • [9] Sparse-view CT reconstruction with improved GoogLeNet
    Xie, Shipeng
    Zhang, Pengcheng
    Luo, Limin
    Li, Haibo
    MEDICAL IMAGING 2018: BIOMEDICAL APPLICATIONS IN MOLECULAR, STRUCTURAL, AND FUNCTIONAL IMAGING, 2018, 10578
  • [10] Causal Intervention for Sparse-View Gait Recognition
    Wang, Jilong
    Hou, Saihui
    Huang, Yan
    Cao, Chunshui
    Liu, Xu
    Huang, Yongzhen
    Wang, Liang
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 77 - 85