Multiple Gold Nanoparticle Cores within a Single SiO2 Shell for Preservable Solid-State Surface-Enhanced Raman Scattering and Catalytic Sensing

被引:12
|
作者
Dey, Suman [1 ]
Mishra, Smruti M. [1 ]
Roy, Abhijit [1 ,2 ]
Roy, Anuradha [3 ]
Senapati, Dulal [3 ]
Satpati, Biswarup [1 ]
机构
[1] CI Homi Bhaba Natl Inst, Saha Inst Nucl Phys, Surface Phys & Mat Sci Div, Kolkata 700064, India
[2] Univ Zaragoza, Lab Microscopias Avanzadas LMA, Zaragoza 50018, Spain
[3] CI Homi Bhaba Natl Inst, Saha Inst Nucl Phys, Chem Sci Div, Kolkata 700064, India
关键词
multi-core@shell nanoparticles; nanoaggregates; surface-enhanced Raman scattering; transmission electronmicroscopy; FDTD simulations; nonenzymatic glucosesensing; OPTICAL-PROPERTIES; ELECTRIC-FIELD; GLUCOSE; SPECTROSCOPY; SENSITIVITY; AU-AT-SIO2; RESONANCE; SIZE; NANOSTRUCTURES; HYDROGENATION;
D O I
10.1021/acsanm.3c02455
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Metal@dielectriccore@shell nanoparticles (NPs) have attractedsignificant attention due to their multifunctional properties andvast applications in different fields of catalysis, photonics, sensing,nanomedicine, etc. However, there is a dearth of reports about thesynthesis of controlled aggregation of gold cores without using anycross-linkers and the effects of the presence of multiple metalliccores in one shell, particularly for surface-enhanced Raman scattering(SERS) and electrochemical sensing. Nanoaggregates, N & GE; 2 (where N is the number of nanoparticlesin aggregation), can effectively be used for fine-tuning plasmon wavelength,whereas collective encapsulation of number-selected nanoaggregatesby functionalized SiO2 generates multiple capacitors whichin turn enhance the field at the nanojunctions and nanogaps for improvedSERS and catalytic sensing activity. We successfully prepared controlledAuNP aggregation, passivated them by the SiO2 outer layerto make them suitable for preservation in the solid state and functionalizationby 3-aminopropyl trimethoxysilane (APTMS), and separated the nanoaggregatesbased on the aggregation size (individual nanoaggregates having 2to 100 nanoparticles in each). The thickness of the silica shell wasengineered in such a way that shell thickness does not make any hindrancein optical measurements, and the effect of multiple nanoparticle coreson the surface plasmon resonance and SERS can be understood properlyand also allows external molecules to reach active gold nanoparticlesurface for electrocatalytic activity. Functionalization allows individualencapsulations to further form multi-junction capacitors by bridgingthem through a positively charged dye molecule, here Rhodamine 6G(Rh6G). By using these multiple gold nanoparticle cores within a singlesilica shell (multi-Au@SiO2 core@shell nanoparticles) withimproved SERS and electrocatalytic activity, we have also successfullyultrasensed (0.003 & mu;A & BULL;& mu;M-1 & BULL;cm(-2)) glucose in a nonenzymatic electrochemical pathway.
引用
收藏
页码:15606 / 15619
页数:14
相关论文
共 44 条
  • [41] Surface-enhanced Raman scattering imaging of HER2 cancer markers overexpressed in single MCF7 cells using antibody conjugated hollow gold nanospheres
    Lee, Sangyeop
    Chon, Hyangah
    Lee, Moonkwon
    Choo, Jaebum
    Shin, Soon Young
    Lee, Young Han
    Rhyu, Im Joo
    Son, Sang Wook
    Oh, Chil Hwan
    BIOSENSORS & BIOELECTRONICS, 2009, 24 (07) : 2260 - 2263
  • [42] In-Plate and On-Plate Structural Control of Ultra-Stable Gold/Silver Bimetallic Nanoplates as Redox Catalysts, Nanobuilding Blocks, and Single-Nanoparticle Surface-Enhanced Raman Scattering Probes
    Oh, Ju-Hwan
    Shin, Hyunku
    Choi, Jong Yun
    Jung, Hee Won
    Choi, Yeonho
    Lee, Jae-Seung
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (40) : 27140 - 27150
  • [43] Development of surface-enhanced Raman scattering-sensing Method by combining novel Ag@Au core/shell nanoparticle-based SERS probe with hybridization chain reaction for high-sensitive detection of hepatitis C virus nucleic acid
    Ruiying Peng
    Wenchen Qi
    Ting Deng
    Yanmei Si
    Jishan Li
    Analytical and Bioanalytical Chemistry, 2024, 416 : 2515 - 2525
  • [44] Development of surface-enhanced Raman scattering-sensing Method by combining novel Ag@Au core/shell nanoparticle-based SERS probe with hybridization chain reaction for high-sensitive detection of hepatitis C virus nucleic acid
    Peng, Ruiying
    Qi, Wenchen
    Deng, Ting
    Si, Yanmei
    Li, Jishan
    ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2024, 416 (10) : 2515 - 2525