A Contrastive Model with Local Factor Clustering for Semi-Supervised Few-Shot Learning

被引:0
|
作者
Lin, Hexiu [1 ]
Liu, Yukun [1 ]
Shi, Daming [1 ]
Cheng, Xiaochun [2 ]
机构
[1] Shenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen 518060, Peoples R China
[2] Middlesex Univ, Fac Sci & Technol, London NW4 4BT, England
关键词
few-shot learning; clustering; semi-supervised learning; local features; contrastive learning;
D O I
10.3390/math11153394
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Learning novel classes with a few samples per class is a very challenging task in deep learning. To mitigate this issue, previous studies have utilized an additional dataset with extensively labeled samples to realize transfer learning. Alternatively, many studies have used unlabeled samples that originated from the novel dataset to achieve few-shot learning, i.e., semi-supervised few-shot learning. In this paper, an easy but efficient semi-supervised few-shot learning model is proposed to address the embeddings mismatch problem that results from inconsistent data distributions between the novel and base datasets, where samples with the same label approach each other while samples with different labels separate from each other in the feature space. This model emphasizes pseudo-labeling guided contrastive learning. We also develop a novel local factor clustering module to improve the ability to obtain pseudo-labels from unlabeled samples, and this module fuses the local feature information of labeled and unlabeled samples. We report our experimental results on the mini-ImageNet and tiered-ImageNet datasets for both five-way one-shot and five-way five-shot settings and achieve better performance than previous models. In particular, the classification accuracy of our model is improved by approximately 11.53% and 14.87% compared to the most advanced semi-supervised few-shot learning model we know in the five-way one-shot scenario. Moreover, ablation experiments in this paper show that our proposed clustering strategy demonstrates accuracy improvements of about 4.00% in the five-way one-shot and five-way five-shot scenarios compared to two popular clustering methods.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] GCT: Graph Co-Training for Semi-Supervised Few-Shot Learning
    Xu, Rui
    Xing, Lei
    Shao, Shuai
    Zhao, Lifei
    Liu, Baodi
    Liu, Weifeng
    Zhou, Yicong
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (12) : 8674 - 8687
  • [32] A convex Kullback-Leibler optimization for semi-supervised few-shot learning
    Liu, Yukun
    Luo, Zhaohui
    Shi, Daming
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2024, 249
  • [33] TENET: Beyond Pseudo-labeling for Semi-supervised Few-shot Learning
    Ma, Chengcheng
    Dong, Weiming
    Xu, Changsheng
    MACHINE INTELLIGENCE RESEARCH, 2025,
  • [34] Pseudo-loss Confidence Metric for Semi-supervised Few-shot Learning
    Huang, Kai
    Geng, Jie
    Jiang, Wen
    Deng, Xinyang
    Xu, Zhe
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 8651 - 8660
  • [35] Semi-Supervised Few-Shot Learning from A Dependency-Discriminant Perspective
    Hou, Zejiang
    Kung, Sun-Yuan
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2022, 2022, : 2816 - 2824
  • [36] Semi-Supervised Few-Shot Classification With Multitask Learning and Iterative Label Correction
    Ji, Hong
    Gao, Zhi
    Lu, Yao
    Li, Ziyao
    Chen, Boan
    Li, Yanzhang
    Zhu, Jun
    Wang, Chao
    Shi, Zhicheng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 15
  • [37] Supervised Graph Contrastive Learning for Few-Shot Node Classification
    Tan, Zhen
    Ding, Kaize
    Guo, Ruocheng
    Liu, Huan
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2022, PT II, 2023, 13714 : 394 - 411
  • [38] Learning a Few-shot Embedding Model with Contrastive Learning
    Liu, Chen
    Fu, Yanwei
    Xu, Chengming
    Yang, Siqian
    Li, Jilin
    Wang, Chengjie
    Zhang, Li
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 8635 - 8643
  • [39] SEMI-SUPERVISED FEW-SHOT SEGMENTATION WITH NOISY SUPPORT IMAGES
    Zhang, Runtong
    Zhu, Hongyuan
    Zhang, Hanwang
    Gong, Chen
    Zhou, Joey Tianyi
    Meng, Fanman
    2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 1550 - 1554
  • [40] UNSUPERVISED AND SEMI-SUPERVISED FEW-SHOT ACOUSTIC EVENT CLASSIFICATION
    Huang, Hsin-Ping
    Puvvada, Krishna C.
    Sun, Ming
    Wang, Chao
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 331 - 335