Evolutionary conservation of the structure and function of meiotic Rec114-Mei4 and Mer2 complexes

被引:7
作者
Daccache, Dima [1 ]
De Jonge, Emma [1 ]
Liloku, Pascaline [1 ]
Mechleb, Karen [1 ]
Haddad, Marita [1 ]
Corthaut, Sam [2 ]
Sterckx, Yann G. -J. [2 ]
Volkov, Alexander N. N. [3 ,4 ]
Bouuaert, Corentin Claeys [1 ]
机构
[1] Catholic Univ Louvain, Louvain Inst Biomol Sci & Technol, B-1348 Louvain La Neuve, Belgium
[2] Univ Antwerp, Infla Med Ctr Excellence, Lab Med Biochem LMB, B-2610 Antwerp, Belgium
[3] Vrije Univ Brussel VUB, Vlaams Inst Biotechnol VIB, Ctr Struct Biol VIB, VIB, B-1050 Brussels, Belgium
[4] Vrije Univ Brussel VUB, Jeener NMR Ctr 4Jean, B-1050 Brussels, Belgium
基金
欧洲研究理事会;
关键词
DNA double-strand break; S; cerevisiae; biomolecular condensation; meiotic recombination; multivalent protein-DNA interactions; protein structure; STRAND BREAK FORMATION; CHROMOSOME AXIS; RECOMBINATION; INITIATION; MEI4; ARCHITECTURE; PROGRAM; SPO11; GENE;
D O I
10.1101/gad.350462.123
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
In this study, Daccache et al. describe structural and functional properties of the meiotic DNA double-strand break complex, comprised of Rec114-Mei4 and Mer2 proteins, in S. cerevisiae. They further show that the architectures of Rec114-Mei4 and Mer2, and their multivalent binding to branched DNA, are evolutionarily conserved and important for complex condensation. Meiosis-specific Rec114-Mei4 and Mer2 complexes are thought to enable Spo11-mediated DNA double-strand break (DSB) formation through a mechanism that involves DNA-dependent condensation. However, the structure, molecular properties, and evolutionary conservation of Rec114-Mei4 and Mer2 are unclear. Here, we present AlphaFold models of Rec114-Mei4 and Mer2 complexes supported by nuclear magnetic resonance (NMR) spectroscopy, small-angle X-ray scattering (SAXS), and mutagenesis. We show that dimers composed of the Rec114 C terminus form & alpha;-helical chains that cup an N-terminal Mei4 & alpha; helix, and that Mer2 forms a parallel homotetrameric coiled coil. Both Rec114-Mei4 and Mer2 bind preferentially to branched DNA substrates, indicative of multivalent protein-DNA interactions. Indeed, the Rec114-Mei4 interaction domain contains two DNA-binding sites that point in opposite directions and drive condensation. The Mer2 coiled-coil domain bridges coaligned DNA duplexes, likely through extensive electrostatic interactions along the length of the coiled coil. Finally, we show that the structures of Rec114-Mei4 and Mer2 are conserved across eukaryotes, while DNA-binding properties vary significantly. This work provides insights into the mechanism whereby Rec114-Mei4 and Mer2 complexes promote the assembly of the meiotic DSB machinery and suggests a model in which Mer2 condensation is the essential driver of assembly, with the DNA-binding activity of Rec114-Mei4 playing a supportive role.
引用
收藏
页码:535 / 553
页数:19
相关论文
共 54 条
[1]   Comparison of ARM and HEAT protein repeats [J].
Andrade, MA ;
Petosa, C ;
O'Donoghue, SI ;
Müller, CW ;
Bork, P .
JOURNAL OF MOLECULAR BIOLOGY, 2001, 309 (01) :1-18
[2]   Antiviral protein Ski8 is a direct partner of Spo11 in meiotic DNA break formation, independent of its cytoplasmic role in RNA metabolism [J].
Arora, C ;
Kee, K ;
Maleki, S ;
Keeney, S .
MOLECULAR CELL, 2004, 13 (04) :549-559
[3]   REC114 Partner ANKRD31 Controls Number, Timing, and Location of Meiotic DNA Breaks [J].
Boekhout, Michiel ;
Karasu, Mehmet E. ;
Wang, Juncheng ;
Acquaviva, Laurent ;
Pratto, Florencia ;
Brick, Kevin ;
Eng, Diana Y. ;
Xu, Jiaqi ;
Camerini-Otero, R. Daniel ;
Patel, Dinshaw J. ;
Keeney, Scott .
MOLECULAR CELL, 2019, 74 (05) :1053-+
[4]   Functional interactions of Rec24, the fission yeast ortholog of mouse Mei4, with the meiotic recombination-initiation complex [J].
Bonfils, Sandrine ;
Rozalen, Ana E. ;
Smith, Gerald R. ;
Moreno, Sergio ;
Martin-Castellanos, Cristina .
JOURNAL OF CELL SCIENCE, 2011, 124 (08) :1328-1338
[5]   DANGLE: A Bayesian inferential method for predicting protein backbone dihedral angles and secondary structure [J].
Cheung, Ming-Sin ;
Maguire, Mahon L. ;
Stevens, Tim J. ;
Broadhurst, R. William .
JOURNAL OF MAGNETIC RESONANCE, 2010, 202 (02) :223-233
[6]   DNA-driven condensation assembles the meiotic DNA break machinery [J].
Claeys Bouuaert, Corentin ;
Pu, Stephen ;
Wang, Juncheng ;
Oger, Cedric ;
Daccache, Dima ;
Xie, Wei ;
Patel, Dinshaw J. ;
Keeney, Scott .
NATURE, 2021, 592 (7852) :144-+
[7]   Initiation of Meiotic Recombination: How and Where? Conservation and Specificities Among Eukaryotes [J].
de Massy, Bernard .
ANNUAL REVIEW OF GENETICS, VOL 47, 2013, 47 :563-599
[8]   A High Throughput Genetic Screen Identifies New Early Meiotic Recombination Functions in Arabidopsis thaliana [J].
De Muyt, Arnaud ;
Pereira, Lucie ;
Vezon, Daniel ;
Chelysheva, Liudmila ;
Gendrot, Ghislaine ;
Chambon, Aurelie ;
Laine-Choinard, Sandrine ;
Pelletier, Georges ;
Mercier, Raphael ;
Nogue, Fabien ;
Grelon, Mathilde .
PLOS GENETICS, 2009, 5 (09)
[9]   NMRPIPE - A MULTIDIMENSIONAL SPECTRAL PROCESSING SYSTEM BASED ON UNIX PIPES [J].
DELAGLIO, F ;
GRZESIEK, S ;
VUISTER, GW ;
ZHU, G ;
PFEIFER, J ;
BAX, A .
JOURNAL OF BIOMOLECULAR NMR, 1995, 6 (03) :277-293
[10]   The Molecular Basis of CRL4DDB2/CSA Ubiquitin Ligase Architecture, Targeting, and Activation [J].
Fischer, Eric S. ;
Scrima, Andrea ;
Boehm, Kerstin ;
Matsumoto, Syota ;
Lingaraju, Gondichatnahalli M. ;
Faty, Mahamadou ;
Yasuda, Takeshi ;
Cavadini, Simone ;
Wakasugi, Mitsuo ;
Hanaoka, Fumio ;
Iwai, Shigenori ;
Gut, Heinz ;
Sugasawa, Kaoru ;
Thomae, Nicolas H. .
CELL, 2011, 147 (05) :1024-1039