Random Beam-Based Non-Orthogonal Multiple Access for Massive MIMO Low Earth Orbit Satellite Networks

被引:4
作者
Lee, Jung Hoon [1 ]
Joo, Jung Suk [1 ]
Kim, Pansoo [2 ]
Ryu, Joon-Gyu [2 ]
机构
[1] Hankuk Univ Foreign Studies, Appl Commun Res Ctr, Dept Elect Engn, Yongin 17035, South Korea
[2] Elect & Telecommun Res Inst ETRI, Satellite Commun Res Div, Daejeon 34129, South Korea
关键词
Low earth-orbit (LEO) satellite communications; massive multiple-input multiple-output (MIMO); non-orthogonal multiple access (NOMA); random beamforming; NOMA; CHALLENGES; CAPACITY; CHANNEL;
D O I
10.1109/ACCESS.2023.3296788
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we propose random beam-based non-orthogonal multiple access (NOMA) for massive multiple-input multiple-output (MIMO) low earth orbit (LEO) satellite communication systems that operate with frequency-division duplexing (FDD). Our system model consists of a massive-antenna satellite and multiple single-antenna users within its coverage area. The satellite selectively serves a subset of users based on a target signal-to-interference-plus-noise power ratio (SINR). In the random beam-based NOMA, the satellite utilizes random beams, where each beam can support multiple users using NOMA. To facilitate user selection and power allocation, each user provides several scalar values obtained from statistical channel state information (CSI) as feedback to the satellite. This allows us to reduce the computational complexity of beamforming design and minimize the feedback overhead for channel acquisition. We propose two random beam-based NOMA schemes with varying complexities and feedback overheads. We optimize these schemes by solving joint user selection and power allocation problems. The numerical results demonstrate that our proposed schemes outperform conventional random beamforming, specifically orthogonal multiple access (OMA) at each beam, by supporting a greater number of users.
引用
收藏
页码:75725 / 75735
页数:11
相关论文
共 23 条
  • [11] Lee J. H., 2021, SENSORS-BASEL, V21, P1
  • [12] Capacity of the Multiple Spot Beam Satellite Channel With Rician Fading
    Letzepis, Nick
    Grant, Alex J.
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2008, 54 (11) : 5210 - 5222
  • [13] QoS-Guarantee Resource Allocation for Multibeam Satellite Industrial Internet of Things With NOMA
    Liu, Xin
    Zhai, Xiangping Bryce
    Lu, Weidang
    Wu, Celimuge
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2021, 17 (03) : 2052 - 2061
  • [14] Nilopour H, 2013, 2013 IEEE 24TH INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR, AND MOBILE RADIO COMMUNICATIONS (PIMRC), P332, DOI 10.1109/PIMRC.2013.6666156
  • [15] A Quasi-Optimal Clustering Algorithm for MIMO-NOMA Downlink Systems
    Saggese, Fabio
    Moretti, Marco
    Abrardo, Andrea
    [J]. IEEE WIRELESS COMMUNICATIONS LETTERS, 2020, 9 (02) : 152 - 156
  • [16] Saito Y, 2013, IEEE VTS VEH TECHNOL
  • [17] MIMO Applications for Multibeam Satellites
    Schwarz, Robert T.
    Delamotte, Thomas
    Storek, Kai-Uwe
    Knopp, Andreas
    [J]. IEEE TRANSACTIONS ON BROADCASTING, 2019, 65 (04) : 664 - 681
  • [18] On the capacity of MIMO broadcast channels with partial side information
    Sharif, M
    Hassibi, B
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (02) : 506 - 522
  • [19] Robust Multigroup Multicast Transmission for Frame-Based Multi-Beam Satellite Systems
    Wang, Wenjin
    Liu, Ao
    Zhang, Qian
    You, Li
    Gao, Xiqi
    Zheng, Gan
    [J]. IEEE ACCESS, 2018, 6 : 46074 - 46083
  • [20] DeepNOMA: A Unified Framework for NOMA Using Deep Multi-Task Learning
    Ye, Neng
    Li, Xiangming
    Yu, Hanxiao
    Zhao, Lian
    Liu, Wenjia
    Hou, Xiaolin
    [J]. IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2020, 19 (04) : 2208 - 2225