Fuzzy clustering of time series with time-varying memory

被引:8
|
作者
Cerqueti, Roy [1 ,2 ,3 ]
Mattera, Raffaele [1 ]
机构
[1] Sapienza Univ Rome, Dept Econ & Social Sci, Rome, Italy
[2] London South Bank Univ, Sch Business, London, England
[3] Univ Angers, GRANEM, Angers, France
关键词
Time series clustering; Classification; Fractional Brownian motion; Long range dependence; Dynamic Hurst exponent; HURST EXPONENT; LONG; ROBUST; VALIDITY; MODEL; DYNAMICS; INDEX;
D O I
10.1016/j.ijar.2022.11.021
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Little attention has been devoted to the long memory among the different data features considered for clustering time series. Following previous literature, we measure the long memory of a time series through the estimated Hurst exponent. However, we exploit the fact that a constant value for the Hurst exponent h is unrealistic in many practical examples. In this paper, assuming that the time series follows a multifractional Brownian motion, we estimate a time-varying Hurst exponent used as the input for a fuzzy clustering procedure. Motivated by the relevance of long memory in finance, the usefulness of the proposed clustering procedure is shown with an application to stock prices.& COPY; 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:193 / 218
页数:26
相关论文
共 50 条
  • [1] Fuzzy clustering of time series in the frequency domain
    Maharaj, Elizabeth Ann
    D'Urso, Pierpaolo
    INFORMATION SCIENCES, 2011, 181 (07) : 1187 - 1211
  • [2] Communicability in time-varying networks with memory
    Estrada, Ernesto
    NEW JOURNAL OF PHYSICS, 2022, 24 (06):
  • [3] Time-Varying Gaussian Markov Random Fields Learning for Multivariate Time Series Clustering
    Ding, Wangxiang
    Li, Wenzhong
    Zhang, Zhijie
    Wan, Chen
    Duan, Jianhui
    Lu, Sanglu
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (11) : 11950 - 11966
  • [4] Multiway clustering with time-varying parameters
    Roy Cerqueti
    Raffaele Mattera
    Germana Scepi
    Computational Statistics, 2024, 39 : 51 - 92
  • [5] Multiway clustering with time-varying parameters
    Cerqueti, Roy
    Mattera, Raffaele
    Scepi, Germana
    COMPUTATIONAL STATISTICS, 2024, 39 (01) : 51 - 92
  • [6] Autocorrelation-based fuzzy clustering of time series
    D'Urso, Pierpaolo
    Maharaj, Elizabeth Ann
    FUZZY SETS AND SYSTEMS, 2009, 160 (24) : 3565 - 3589
  • [7] Adaptive time-varying detrended fluctuations analysis: a new method for characterizing time-varying scaling parameters in physiological time series
    Luc Berthouze
    Simon F Farmer
    BMC Neuroscience, 12 (Suppl 1)
  • [8] Detecting time-varying seasonal signal in GPS position time series with different noise levels
    Klos, Anna
    Bos, Machiel S.
    Bogusz, Janusz
    GPS SOLUTIONS, 2018, 22 (01)
  • [9] Fuzzy hyperbolic neural network with time-varying delays
    Wang, Gang
    Zhang, Huaguang
    Chen, Bing
    Tong, Shaocheng
    FUZZY SETS AND SYSTEMS, 2010, 161 (19) : 2533 - 2551
  • [10] Analysis of LRD Series with Time-Varying Hurst Parameter
    Ledesma Orozco, Sergio
    Cerda Villafana, Gustavo
    Avina Cervantes, Gabriel
    Hernandez Fusilier, Donato
    Torres Cisneros, Miguel
    COMPUTACION Y SISTEMAS, 2010, 13 (03): : 295 - 312