Graph neural networks for detecting anomalies in scientific workflows

被引:2
|
作者
Jin, Hongwei [1 ,6 ]
Raghavan, Krishnan [1 ]
Papadimitriou, George [2 ]
Wang, Cong [3 ]
Mandal, Anirban [3 ]
Kiran, Mariam [4 ]
Deelman, Ewa [2 ]
Balaprakash, Prasanna [5 ]
机构
[1] Argonne Natl Lab, Lemont, IL USA
[2] Univ Southern Calif, Los Angeles, CA USA
[3] Renaissance Comp Inst RENCI, Chapel Hill, NC USA
[4] Energy Sci Network ESnet, Berkeley, CA USA
[5] Oak Ridge Natl Lab, Oak Ridge, TN USA
[6] Argonne Natl Lab, Math & Comp Sci Div, 9700 S Cass Ave, Lemont, IL 60439 USA
关键词
Anomaly detection; machine learning; graph neural networks; scientific workflows; hyperparameter tuning; explainable predictions;
D O I
10.1177/10943420231172140
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Identifying and addressing anomalies in complex, distributed systems can be challenging for reliable execution of scientific workflows. We model these workflows as directed acyclic graphs (DAGs), where the nodes and edges of the DAGs represent jobs and their dependencies, respectively. We develop graph neural networks (GNNs) to learn patterns in the DAGs and to detect anomalies at the node (job) and graph (workflow) levels. We investigate workflow-specific GNN models that are trained on a particular workflow and workflow-agnostic GNN models that are trained across the workflows. Our GNN models, which incorporate both individual job features and topological information from the workflow, show improved accuracy and efficiency compared to conventional learning methods for detecting anomalies. While joint trained with multiple scientific workflows, our GNN models reached an accuracy more than 80% for workflow level and 75% for job level anomalies. In addition, we illustrate the importance of hyperparameter tuning method in our study that can significantly improve the metric(s) measure of evaluating the GNN models. Finally, we integrate explainable GNN methods to provide insights on job features in the workflow that cause an anomaly.
引用
收藏
页码:394 / 411
页数:18
相关论文
共 50 条
  • [21] The role of machine learning in scientific workflows
    Deelman, Ewa
    Mandal, Anirban
    Jiang, Ming
    Sakellariou, Rizos
    INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS, 2019, 33 (06) : 1128 - 1139
  • [22] Detecting Anomalous Events in Object-Centric Business Processes via Graph Neural Networks
    Niro, Alessandro
    Werner, Michael
    PROCESS MINING WORKSHOPS, ICPM 2023, 2024, 503 : 179 - 190
  • [23] LSTM Neural Networks for Detecting Anomalies Caused by Web Application Cyber Attacks
    Kotenko, Igor
    Lauta, Oleg
    Kribel, Kseniya
    Saenko, Igor
    NEW TRENDS IN INTELLIGENT SOFTWARE METHODOLOGIES, TOOLS AND TECHNIQUES, 2021, 337 : 127 - 140
  • [24] Graph Neural Networks Based Anomalous RSSI Detection
    Bertalanic, Blaz
    Vnucec, Matej
    Fortuna, Carolina
    2023 INTERNATIONAL BALKAN CONFERENCE ON COMMUNICATIONS AND NETWORKING, BALKANCOM, 2023,
  • [25] MODELING HIERARCHICAL TOPOLOGICAL STRUCTURE IN SCIENTIFIC IMAGES WITH GRAPH NEURAL NETWORKS
    Leventhal, Samuel
    Gyulassy, Attila
    Pascucci, Valerio
    Heimann, Mark
    2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 2995 - 2999
  • [26] NED-GNN: Detecting and Dropping Noisy Edges in Graph Neural Networks
    Xu, Ming
    Zhang, Baoming
    Yuan, Jinliang
    Cao, Meng
    Wang, Chongjun
    WEB AND BIG DATA, PT I, APWEB-WAIM 2022, 2023, 13421 : 91 - 105
  • [27] DETECTING ANOMALIES IN PROCESS CONTROL NETWORKS
    Rrushi, Julian
    Kang, Kyoung-Don
    CRITICAL INFRASTRUCTURE PROTECTION III, 2009, 311 : 151 - 165
  • [28] Graph neural networks for construction applications
    Jia, Yilong
    Wang, Jun
    Shou, Wenchi
    Hosseini, M. Reza
    Bai, Yu
    AUTOMATION IN CONSTRUCTION, 2023, 154
  • [29] Unveiling the Potential of Graph Neural Networks for BGP Anomaly Detection
    Latif, Hamid
    Paillisse, Jordi
    Yang, Jinze
    Cabellos-Aparicio, Albert
    Barlet-Ros, Pere
    PROCEEDINGS OF THE 1ST INTERNATIONAL WORKSHOP ON GRAPH NEURAL NETWORKING, GNNET 2022, 2022, : 7 - 12
  • [30] Detecting Anomalies in Information Assets with Graph Signal Processing
    Akgun, Ayhan
    32ND IEEE SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU 2024, 2024,