18F-FDG PET/CT radiomics predicts brain metastasis in I-IIIA resected Non-Small cell lung cancer

被引:3
|
作者
Zheng, Zhonghang [1 ,2 ]
Wang, Jie [1 ,2 ]
Tan, Weiyue [1 ,2 ]
Zhang, Yi [1 ,2 ]
Li, Jing [1 ,2 ]
Song, Ruiting [1 ,2 ]
Xing, Ligang [3 ]
Sun, Xiaorong [2 ]
机构
[1] Shandong First Med Univ & Shandong Acad Med Sci, Dept Grad, Jinan, Shandong, Peoples R China
[2] Shandong First Med Univ & Shandong Acad Med Sci, Shandong Canc Hosp & Inst, Dept Nucl Med, Jinan 250117, Shandong, Peoples R China
[3] Shandong First Med Univ & Shandong Acad Med Sci, Shandong Canc Hosp & Inst, Dept Radiat Oncol, Jinan, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Positron emission tomography; computed; tomography; Radiomics; Brain metastases; Non-small cell lung cancer; Prediction model; PROPHYLACTIC CRANIAL IRRADIATION; RISK; EGFR; MUTATION; IMAGES;
D O I
10.1016/j.ejrad.2023.110933
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Objective: To establish 18F-FDG PET/CT radiomics model for predicting brain metastasis in non-small cell lung cancer (NSCLC) patients.Methods: This research comprised 203 NSCLC patients who had received surgical therapy at two institutions. To identify independent predictive factors of brain metastasis, metabolic indicators, CT features, and clinical fea-tures were investigated. A prediction model was established by incorporating radiomics signature and clinico-pathological risk variables. The suggested model's performance was assessed from the perspective of discrimination, calibration, and clinical application.Results: The C-indices of the PET/CT radiomics model in the training, internal validation, and external validation cohorts were 0.911, 0.825 and 0.800, respectively. According to the multivariate analysis, neuron-specific enolase (NSE) and air bronchogram were independent risk factors for brain metastasis (BM). Furthermore, the combined model integrating radiomics and clinicopathological characteristics related to brain metastasis per-formed better in terms of prediction, with C-indices of 0.927, 0.861, and 0.860 in the training, internal vali-dation, and external validation cohorts, respectively. The decision curve analysis (DCA) suggested that the PET/ CT nomogram was clinically beneficial.Conclusions: A predictive algorithm based on PET/CT imaging information and clinicopathological features may accurately predict the probability of brain metastasis in NSCLC patients following surgery. This presented doctors with a unique technique for screening NSCLC patients at high risk of brain metastasis.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] 18F-FDG PET/CT radiomics nomogram for predicting occult lymph node metastasis of non-small cell lung cancer
    Qiao, Jianyi
    Zhang, Xin
    Du, Ming
    Wang, Pengyuan
    Xin, Jun
    FRONTIERS IN ONCOLOGY, 2022, 12
  • [2] Multimodal radiomics-based methods using deep learning for prediction of brain metastasis in non-small cell lung cancer with 18F-FDG PET/CT images
    Zhu, Yuan
    Cong, Shan
    Zhang, Qiyang
    Huang, Zhenxing
    Yao, Xiaohui
    Cheng, You
    Liang, Dong
    Hu, Zhanli
    Shao, Dan
    BIOMEDICAL PHYSICS & ENGINEERING EXPRESS, 2024, 10 (06):
  • [3] Effects of Tracer Uptake Time in Non-Small Cell Lung Cancer 18F-FDG PET Radiomics
    Kolinger, Guilherme D.
    Garc, David Vallez
    Kramer, Gerbrand Maria
    Frings, Virginie
    Zwezerijnen, Gerben J. C.
    Smit, Egbert F.
    de Langen, Adrianus Johannes
    Buvat, Irene
    Boellaard, Ronald
    JOURNAL OF NUCLEAR MEDICINE, 2022, 63 (06) : 919 - 924
  • [4] Preoperative prediction of mediastinal lymph node metastasis in non-small cell lung cancer based on 18F-FDG PET/CT radiomics
    Huang, Y.
    Jiang, X.
    Xu, H.
    Zhang, D.
    Liu, L. -n.
    Xia, Y. -x.
    Xu, D. -k.
    Wu, H. -j.
    Cheng, G.
    Shi, Y. -h.
    CLINICAL RADIOLOGY, 2023, 78 (01) : 8 - 17
  • [5] Impact of 18F-FDG PET/CT in the Treatment of Patients With Non-Small Cell Lung Cancer
    Taus, Alvaro
    Aguilo, Rafael
    Curull, Victor
    Suarez-Pinera, Marina
    Rodriguez-Fuster, Alberto
    Rodriguez de Dios, Nuria
    Pijuan, Lara
    Zuccarino, Flavio
    Vollmer, Ivan
    Sanchez-Font, Albert
    Belda-Sanchis, Jose
    Arriola, Edurne
    ARCHIVOS DE BRONCONEUMOLOGIA, 2014, 50 (03): : 99 - 104
  • [6] Performance of 18F-FDG PET/CT Radiomics for Predicting EGFR Mutation Status in Patients With Non-Small Cell Lung Cancer
    Zhang, Min
    Bao, Yiming
    Rui, Weiwei
    Shangguan, Chengfang
    Liu, Jiajun
    Xu, Jianwei
    Lin, Xiaozhu
    Zhang, Miao
    Huang, Xinyun
    Zhou, Yilei
    Qu, Qian
    Meng, Hongping
    Qian, Dahong
    Li, Biao
    FRONTIERS IN ONCOLOGY, 2020, 10
  • [7] Prospective comparison of 18F-FDG PET/MRI and 18F-FDG PET/CT for thoracic staging of non-small cell lung cancer
    Kirchner, Julian
    Sawicki, Lino M.
    Nensa, Felix
    Schaarschmidt, Benedikt M.
    Reis, Henning
    Ingenwerth, Marc
    Bogner, Simon
    Aigner, Clemens
    Buchbender, Christian
    Umutlu, Lale
    Antoch, Gerald
    Herrmann, Ken
    Heusch, Philipp
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2019, 46 (02) : 437 - 445
  • [8] Comparison of 18F-FDG PET/CT and MDCT for staging/restaging of non-small cell lung cancer
    Sobic-Saranovic, D.
    Petrusic, I.
    Artiko, V.
    Pavlovic, S.
    Subotic, D.
    Saranovic, D.
    Nagorni-Obradovic, L.
    Petrovic, N.
    Todorovic-Tirnanic, M.
    Odalovic, S.
    Grozdic-Milojevic, I.
    Stoiljkovic, M.
    Obradovic, V.
    NEOPLASMA, 2015, 62 (02) : 295 - 301
  • [9] Evaluation of gross tumor size using CT, 18F-FDG PET, integrated 18F-FDG PET/CT and pathological analysis in non-small cell lung cancer
    Yu, Hui Ming
    Liu, Yun Fang
    Hou, Ming
    Liu, Jie
    Li, Xiao Nan
    Yu, Jin Ming
    EUROPEAN JOURNAL OF RADIOLOGY, 2009, 72 (01) : 104 - 113
  • [10] The added value of 18F-FDG PET/CT in staging non-small cell lung cancer
    Sheha, Aliaa S.
    Elia, Remon Zaher
    Ghoneim, Nada Mohammed Farid Hassan
    EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE, 2019, 50 (01):