Exploration of the performance of iron-based superhydrophilic meshes for oil-water separation

被引:1
作者
Preethi, V. [1 ]
Nair, Shradha [1 ]
Ramesh, S. T. [1 ]
Gandhimathi, R. [1 ]
机构
[1] Natl Inst Technol Tiruchirappalli, Dept Civil Engn, Tiruchirappalli, Tamil Nadu, India
来源
JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH PART A-TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING | 2023年 / 58卷 / 09期
关键词
Oily wastewater; superhydrophilic meshes; oil-water separation; locomotive wash effluent; OIL/WATER SEPARATION; WETTABILITY; FABRICATION; SURFACES;
D O I
10.1080/10934529.2023.2236534
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This study investigates the oil-water separation capability of iron-based superhydrophilic meshes. It also intends to provide an optimistic view of their potential for industrial application. Oil-water separation performance of the 150 mesh, 300 mesh, and 400 mesh is primarily examined by analyzing the efficiency and speediness of separation as well as the limit of oil intrusion using petroleum based oils. The superhydrophilic meshes are further applied for oil-water separation of locomotive wash effluent. The superhydrophilic meshes showed good oil-water separation behavior. The 300 mesh is observed to have superior separation performance. It is also tested to have good reusability and resistance in harsh conditions. The separation effectiveness of 94.7%, reduced turbidity of 21.8 NTU, and chemical oxygen demand of around 70 ppm, along with reasonable flux and intrusion pressure values of 73.28 Lm(-2)min(-1) and 0.848 kPa, respectively, are noticed for the separation study conducted for locomotive wash effluent using the designated superhydrophilic mesh. This study hence as well demonstrates a prospective future of superhydrophilic mesh for practical utility.
引用
收藏
页码:793 / 804
页数:12
相关论文
共 50 条
  • [31] Nanostructure-Based Oil-Water Separation: Mechanism and Status
    Wang, Bao
    Feng, Shaotong
    Wang, Caihua
    Liu, Xiaoyan
    Chen, Lei
    Yan, Dayun
    SEPARATIONS, 2023, 10 (11)
  • [32] All-electrochemical-prepared, efficient and robust superhydrophilic/ underwater superoleophobic meshes for synchronously achieving oil-water separation and water-soluble pollutant photodegradation
    Yang, Jiali
    He, Tingting
    Li, Xinyi
    Wang, Rui
    Zhao, Yang
    Wang, Huan
    JOURNAL OF WATER PROCESS ENGINEERING, 2024, 67
  • [33] Fabrication and characterization of superhydrophilic graphene-based electrospun membranes for efficient oil-water separation
    Francis, Lijo
    Mohammed, Shabin
    Hashaikeh, Raed
    Hilal, Nidal
    JOURNAL OF WATER PROCESS ENGINEERING, 2023, 54
  • [34] Superhydrophilic and superoleophobic chitosan-based nanocomposite coatings for oil/water separation
    Yang, Jin
    Song, Haojie
    Yan, Xuehua
    Tang, Hua
    Li, Changsheng
    CELLULOSE, 2014, 21 (03) : 1851 - 1857
  • [35] Conditions for spontaneous oil-water separation with oil-water separators
    Sinha, Shayandev
    Mahmoud, Khaled A.
    Das, Siddhartha
    RSC ADVANCES, 2015, 5 (98) : 80184 - 80191
  • [36] Fabrication of pre-wetting induced superamphiphobic meshes for on-demand oil-water separation of light or heavy oil-water mixtures
    Xu, Shuangshuang
    Wang, Qing
    Wang, Ning
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2020, 602
  • [37] Green, robust self-cleaning superhydrophilic coating and on-demand oil-water separation
    Zhang, Guanghui
    Liu, Yan
    Chen, Chao
    Huang, Chengyi
    Long, Lulu
    Zhang, Shirong
    Yang, Gang
    Shen, Fei
    Zhang, Xiaohong
    Zhang, Yanzong
    APPLIED SURFACE SCIENCE, 2022, 595
  • [38] Preparation of a superhydrophilic and superoleophobic sponge for continuous oil/water and oil/oil separation
    Zhu, Guoxin
    Zhang, Xiong
    He, Yan
    APPLIED SURFACE SCIENCE, 2024, 670
  • [39] Effective preparation of superhydrophilic-underwater superoleophobic nanoparticles/polymeric sponges for oil-water separation
    Lin, Bo
    He, Wen-Xu
    Jiang, Li-Wang
    Li, Zeng-Tian
    Wang, Hua-Ying
    Wu, Ying-Xuan
    He, Fu-An
    Wu, Hui-Jun
    SURFACE TOPOGRAPHY-METROLOGY AND PROPERTIES, 2020, 8 (04)
  • [40] Preparation and enduring effect oil-water separation performance of water-based superhydrophilic anti-fouling composite mesh membrane
    Wang R.
    Chen J.
    Yu Z.
    Yu X.
    Zhang Y.
    Fuhe Cailiao Xuebao/Acta Materiae Compositae Sinica, 2023, 40 (07): : 4082 - 4094