Ergodic estimators of double exponential Ornstein-Uhlenbeck processes

被引:3
|
作者
Hu, Yaozhong [1 ]
Sharma, Neha [1 ]
机构
[1] Univ Alberta, Dept Math & Stat Sci, Edmonton, AB T6G 2G1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Double exponential Ornstein-Uhlenbeck process; Discrete time observation; Ergodic estimators; Strong consistency; Central limit theorem; Exact simulation;
D O I
10.1016/j.cam.2023.115329
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The goal of this paper is to construct ergodic estimators for double exponential Ornstein- Uhlenbeck process, where the process is observed at discrete time instants with time step size h. We show the existence and uniqueness of the function equations to determine the estimators for fixed time step size h. Also, we show the strong consistency and the asymptotic normality of the estimators. Furthermore, we propose a simulation method of the double exponential Ornstein-Uhlenbeck process and perform some numerical simulations to demonstrate the effectiveness of the proposed estimators.& COPY; 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Modified trajectory fitting estimators for multi-regime threshold Ornstein-Uhlenbeck processes
    Han, Yuecai
    Zhang, Dingwen
    STAT, 2023, 12 (01):
  • [2] Modified least squares estimators for Ornstein-Uhlenbeck processes from low-frequency observations
    Han, Yuecai
    Hu, Yaozhong
    Zhang, Dingwen
    APPLIED MATHEMATICS LETTERS, 2024, 156
  • [3] Minimum contrast estimator for fractional Ornstein-Uhlenbeck processes
    Xiao WeiLin
    Zhang WeiGuo
    Zhang XiLi
    SCIENCE CHINA-MATHEMATICS, 2012, 55 (07) : 1497 - 1511
  • [4] Minimum contrast estimator for fractional Ornstein-Uhlenbeck processes
    XIAO WeiLin1
    2Department of Accounting and Finance
    ScienceChina(Mathematics), 2012, 55 (07) : 1497 - 1511
  • [5] Minimum contrast estimator for fractional Ornstein-Uhlenbeck processes
    WeiLin Xiao
    WeiGuo Zhang
    XiLi Zhang
    Science China Mathematics, 2012, 55 : 1497 - 1511
  • [6] Exact simulation of Ornstein-Uhlenbeck tempered stable processes
    Qu, Yan
    Dassios, Angelos
    Zhao, Hongbiao
    JOURNAL OF APPLIED PROBABILITY, 2021, 58 (02) : 347 - 371
  • [7] Central Limit Theorems for Super Ornstein-Uhlenbeck Processes
    Yan-Xia Ren
    Renming Song
    Rui Zhang
    Acta Applicandae Mathematicae, 2014, 130 : 9 - 49
  • [8] Central Limit Theorems for Super Ornstein-Uhlenbeck Processes
    Ren, Yan-Xia
    Song, Renming
    Zhang, Rui
    ACTA APPLICANDAE MATHEMATICAE, 2014, 130 (01) : 9 - 49
  • [9] Stable central limit theorems for super Ornstein-Uhlenbeck processes
    Ren, Yan-Xia
    Song, Renming
    Sun, Zhenyao
    Zhao, Jianjie
    ELECTRONIC JOURNAL OF PROBABILITY, 2019, 24
  • [10] Generalized moment estimators for α-stable Ornstein-Uhlenbeck motions from discrete observations
    Cheng, Yiying
    Hu, Yaozhong
    Long, Hongwei
    STATISTICAL INFERENCE FOR STOCHASTIC PROCESSES, 2020, 23 (01) : 53 - 81