Functional Bimetal Co-Modification for Boosting Large-Current-Density Seawater Electrolysis by Inhibiting Adsorption of Chloride Ions

被引:110
作者
Huang, Chuqiang [1 ]
Zhou, Qiancheng [1 ]
Yu, Luo [2 ]
Duan, Dingshuo [1 ]
Cao, Tianyu [1 ]
Qiu, Shunhang [1 ]
Wang, Zhouzhou [1 ]
Guo, Jin [1 ]
Xie, Yuxin [1 ]
Li, Liping [3 ]
Yu, Ying [1 ]
机构
[1] Cent China Normal Univ, Inst Nanosci & Nanotechnol, Coll Phys Sci & Technol, Wuhan 430079, Peoples R China
[2] China Univ Geosci, Fac Mat Sci & Chem, Lab Solar Fuel, Wuhan 430074, Peoples R China
[3] Jilin Univ, Coll Chem, State Key Lab Inorgan Synth & Preparat Chem, Changchun 130012, Peoples R China
基金
中国国家自然科学基金;
关键词
bifunctional electrodes; functional bimetals; large current densities; nickel phosphide; seawater splitting; HYDROXIDE; ELECTROCATALYSTS; ELECTRODES; EFFICIENT; EVOLUTION;
D O I
10.1002/aenm.202301475
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Designing efficient and durable electrocatalysts for seawater splitting to avoid undesired chlorine evolution reaction and resist the corrosive seawater is crucial for seawater electrolysis technology. Herein, a functional bimetal (Co and Fe) is designed specifically to modify nickel phosphide (denoted as CoFe-Ni2P) for boosting seawater splitting, where the Fe atom improves the conductivity of Ni2P for improving electron transfer, and the Co atom accelerates the self-reconstruction process to favorably generate bimetal co-incorporated NiOOH (CoFe-NiOOH) species on the electrode surface. Additionally, these in situ-generated CoFe-NiOOH species remarkably inhibit the adsorption of Cl- ions but selectively adsorb OH- ions, which contributes to excellent performance of the CoFe-Ni2P electrode for large-current-density seawater splitting. Therefore, the CoFe-Ni2P electrode only requires low overpotentials of 266 and 304 mV to afford current densities of 100 and 500 mA cm(-2) in a harsh 6 m KOH + seawater electrolyte, and can work stably for 600 h. Impressively, a flow-type anion exchange membrane electrolyzer assembled by the CoFe-Ni2P/Ni-felt bifunctional electrode is demonstrated to run stably at an industrially large current density of 1.0 A cm(-2) in 6 m KOH + seawater electrolyte for 350 h, which shows promising application prospects.
引用
收藏
页数:12
相关论文
共 47 条
[1]   Unusual Activity of Rationally Designed Cobalt Phosphide/Oxide Heterostructure Composite for Hydrogen Production in Alkaline Medium [J].
Alsabban, Merfat M. ;
Eswaran, Mathan Kumar ;
Peramaiah, Karthik ;
Wahyudi, Wandi ;
Yang, Xiulin ;
Ramalingam, Vinoth ;
Hedhili, Mohamed N. ;
Miao, Xiaohe ;
Schwingenschlogl, Udo ;
Li, Lain-Jong ;
Tung, Vincent ;
Huang, Kuo-Wei .
ACS NANO, 2022, 16 (03) :3906-3916
[2]   Spectroscopic and Electrokinetic Evidence for a Bifunctional Mechanism of the Oxygen Evolution Reaction** [J].
Bai, Lichen ;
Lee, Seunghwa ;
Hu, Xile .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (06) :3095-3103
[3]   Self-optimizing iron phosphorus oxide for stable hydrogen evolution at high current [J].
Cao, Dengfeng ;
Sheng, Beibei ;
Qi, Zhenghang ;
Xu, Wenjie ;
Chen, Shuangming ;
Moses, Oyawale Adetunji ;
Long, Ran ;
Xiong, Yujie ;
Wu, Xiaojun ;
Song, Li .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2021, 298
[4]   Funnel hopping: Searching the cluster potential energy surface over the funnels [J].
Cheng, Longjiu ;
Feng, Yan ;
Yang, Jie ;
Yang, Jinlong .
JOURNAL OF CHEMICAL PHYSICS, 2009, 130 (21)
[5]   Challenges and Opportunities for Seawater Electrolysis: A Mini-Review on Advanced Materials in Chlorine-Involved Electrochemistry [J].
Cui, Baihua ;
Shi, Yi ;
Li, Gen ;
Chen, Yanan ;
Chen, Wei ;
Deng, Yida ;
Hu, Wenbin .
ACTA PHYSICO-CHIMICA SINICA, 2022, 38 (06)
[6]   Design Criteria, Operating Conditions, and Nickel-Iron Hydroxide Catalyst Materials for Selective Seawater Electrolysis [J].
Dionigi, Fabio ;
Reier, Tobias ;
Pawolek, Zarina ;
Gliech, Manuel ;
Strasser, Peter .
CHEMSUSCHEM, 2016, 9 (09) :962-972
[7]   Direct Electrolytic Splitting of Seawater: Opportunities and Challenges [J].
Dresp, Soeren ;
Dionigi, Fabio ;
Klingenhof, Malte ;
Strasser, Peter .
ACS ENERGY LETTERS, 2019, 4 (04) :933-942
[8]   Direct Electrolytic Splitting of Seawater: Activity, Selectivity, Degradation, and Recovery Studied from the Molecular Catalyst Structure to the Electrolyzer Cell Level [J].
Dresp, Soeren ;
Dionigi, Fabio ;
Loos, Stefan ;
de Araujo, Jorge Ferreira ;
Spoeri, Camillo ;
Gliech, Manuel ;
Dau, Holger ;
Strasser, Peter .
ADVANCED ENERGY MATERIALS, 2018, 8 (22)
[9]   Karst landform-featured monolithic electrode for water electrolysis in neutral media [J].
Gao, Xueqing ;
Chen, Yingdong ;
Sun, Tong ;
Huang, Jianmei ;
Zhang, Wei ;
Wang, Qiang ;
Cao, Rui .
ENERGY & ENVIRONMENTAL SCIENCE, 2020, 13 (01) :174-182
[10]   Advantageous crystalline-amorphous phase boundary for enhanced electrochemical water oxidation [J].
Han, HyukSu ;
Choi, Heechae ;
Mhin, Sungwook ;
Hong, Yu-Rim ;
Kim, Kang Min ;
Kwon, Jiseok ;
Ali, Ghulam ;
Chung, Kyung Yoon ;
Je, Minyeong ;
Umh, Ha Nee ;
Lim, Dong-Ha ;
Davey, Kenneth ;
Qiao, Shi-Zhang ;
Paik, Ungyu ;
Song, Taeseup .
ENERGY & ENVIRONMENTAL SCIENCE, 2019, 12 (08) :2443-2454