Heptamethoxyflavone Alleviates Metabolic Syndrome in High-Fat Diet-Fed Mice by Regulating the Composition, Function, and Metabolism of Gut Microbiota

被引:13
|
作者
Feng, Konglong [1 ]
Zhang, Huiting [1 ]
Chen, Cong [2 ]
Ho, Chi-Tang [3 ]
Kang, Meng [1 ]
Zhu, Siyue [3 ]
Xu, Junwei [1 ]
Deng, Xiwen [1 ]
Huang, Qingrong [3 ]
Cao, Yong [1 ]
机构
[1] South China Agr Univ, Coll Food Sci, Guangdong Prov Key Lab Nutraceut & Funct Foods, Guangzhou 510642, Guangdong, Peoples R China
[2] Guangdong Ecoengn Polytech, Guangzhou 510520, Guangdong, Peoples R China
[3] Rutgers State Univ, Dept Food Sci, New Brunswick, NJ 08901 USA
关键词
metabolic syndrome; heptamethoxyflavone; gutmicrobiota; metabolites; DISEASE; PEEL;
D O I
10.1021/acs.jafc.3c01881
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
3,5,6,7,8,3 & PRIME;,4 & PRIME;-Heptamethoxyflavone (HMF)could prevent obesity and hyperlipidemia,but its effects on gut microbiota andfecal metabolites remain unclear. Here, the effect of HMF on metabolicsyndrome (MS) was evaluated in high-fat diet (HFD)-fed mice, and itsunderlying mechanisms were revealed by integrative metagenomic andmetabolomic analyses. We demonstrated that HMF could effectively ameliorateHFD-induced MS by alleviating body-weight gain, fat accumulation,hepatic steatosis, and lipid and glucose abnormalities. HMF significantlyaltered the gut microbiota composition in HFD-fed mice with enrichmentof short-chain fatty acid (SCFA)- and bile acid-producing beneficialbacteria and inhibition of harmful bacteria. Also, HMF improved microbialfunctions by up-regulating bile acid metabolism and down-regulatingfatty acid metabolism and inflammatory response-related pathways.Consistent with the gut microbial changes, HMF altered the fecal metaboliteprofile of HFD-fed mice, mainly characterized by increasing SCFA andseveral bile acid levels as well as lowering several lysophospholipidsand fatty acid levels. Correlation analysis indicated that three keyspecies Faecalibaculum rodentium, Collinsella aerofaciens, and Lactobacillusfermentum and the increase in microbial metabolites,i.e., SCFAs and secondary bile acids, might play a positive role inalleviating MS. Our results suggested that HMF alleviated HFD-inducedMS possibly by modulating the composition, function, and metabolismof gut microbiota.
引用
收藏
页码:10050 / 10064
页数:15
相关论文
共 50 条
  • [31] Glucosamine Ameliorates Symptoms of High-Fat Diet-Fed Mice by Reversing Imbalanced Gut Microbiota
    Yuan, Xubing
    Zheng, Junping
    Ren, Lishi
    Jiao, Siming
    Feng, Cui
    Du, Yuguang
    Liu, Hongtao
    FRONTIERS IN PHARMACOLOGY, 2021, 12
  • [32] Resveratrol-induced gut microbiota reduces obesity in high-fat diet-fed mice
    Wang, Pan
    Li, Daotong
    Ke, Weixin
    Liang, Dong
    Hu, Xiaosong
    Chen, Fang
    INTERNATIONAL JOURNAL OF OBESITY, 2020, 44 (01) : 213 - 225
  • [33] Microalgae oil from Schizochytrium sp. alleviates obesity and modulates gut microbiota in high-fat diet-fed mice
    Ran, Liyuan
    Yu, Jinhui
    Ma, Rui
    Yao, Qing
    Wang, Mingjie
    Bi, Yuping
    Yu, Zichao
    Wu, Yingjie
    FOOD & FUNCTION, 2022, 13 (24) : 12799 - 12813
  • [34] Sexual Dimorphism in Lipid Metabolism and Gut Microbiota in Mice Fed a High-Fat Diet
    Zhu, Qi
    Qi, Nathan
    Shen, Ling
    Lo, Chunmin C. C.
    Xu, Meifeng
    Duan, Qing
    Ollberding, Nicholas J.
    Wu, Zhe
    Hui, David Y. Y.
    Tso, Patrick
    Liu, Min
    NUTRIENTS, 2023, 15 (09)
  • [35] Fenofibrate alleviates the composition and metabolic pathways of gut microbiota in high-fat diet treated hamsters
    Liu, Qifeng
    ANNALS OF MICROBIOLOGY, 2024, 74 (01)
  • [36] Mesona chinensis Benth. Extract Ameliorates Hyperlipidemia in High-Fat Diet-Fed Mice and Rats by Regulating the Gut Microbiota
    Yang, Huilin
    Song, Xiaojuan
    Huang, Xiaofang
    Yu, Bilian
    Lin, Cuiqing
    Du, Jialin
    Yang, Jiehui
    Luo, Qing
    Li, Jingwen
    Feng, Yinshan
    Zhan, Ruoting
    Yan, Ping
    FOODS, 2024, 13 (21)
  • [37] Effects of diet and exercise on metabolic disturbances in high-fat diet-fed mice
    Vieira, Victoria J.
    Valentine, Rudy J.
    Wilund, Kenneth R.
    Woods, Jeffrey A.
    CYTOKINE, 2009, 46 (03) : 339 - 345
  • [38] Modulation of gut microbiota during probiotic-mediated attenuation of metabolic syndrome in high fat diet-fed mice
    Wang, Jingjing
    Tang, Huang
    Zhang, Chenhong
    Zhao, Yufeng
    Derrien, Muriel
    Rocher, Emilie
    Vlieg, Johan E. T. Van-Hylckama
    Strissel, Katherine
    Zhao, Liping
    Obin, Martin
    Shen, Jian
    ISME JOURNAL, 2015, 9 (01): : 1 - 15
  • [39] Jellyfish Collagen Hydrolysate Alleviates Inflammation and Oxidative Stress and Improves Gut Microbe Composition in High-Fat Diet-Fed Mice
    Lv, Zhe
    Zhang, Chongyang
    Song, Wei
    Chen, Qingsong
    Wang, Yaohui
    MEDIATORS OF INFLAMMATION, 2022, 2022
  • [40] Modulation of gut microbiota during probiotic-mediated attenuation of metabolic syndrome in high fat diet-fed mice
    Jingjing Wang
    Huang Tang
    Chenhong Zhang
    Yufeng Zhao
    Muriel Derrien
    Emilie Rocher
    Johan ET van-Hylckama Vlieg
    Katherine Strissel
    Liping Zhao
    Martin Obin
    Jian Shen
    The ISME Journal, 2015, 9 : 1 - 15