EXISTENCE OF EVEN PERFECT POLYNOMIALS

被引:0
作者
Gallardo, Luis H. [1 ]
Rahavandrainy, Olivier [1 ]
机构
[1] Univ Brest, CNRS, UMR 6205, Lab Math Bretagne Atlant, F-29238 Brest, France
来源
MATHEMATICAL REPORTS | 2023年 / 25卷 / 01期
关键词
(bi-unitary) perfect polynomials; finite fields; characteristic p; F-P;
D O I
10.59277/mrar.2023.25.75.1.47
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Perfect polynomials are a natural analogue (in the ring F-p[x]) of multiperfect numbers (in the ring of integers). The latter numbers are classical objects that are poorly understood, since only their definition is simple. We describe, by elementary methods, the most basic objects in the polynomial case of the general problem. We display, for every prime number p not equivalent to 1mod 12 (resp. p not equivalent to 1mod 24) many new even non-splitting perfect (resp. unitary perfect) polynomials over F-p. Moreover, for any prime number p not equivalent to 1mod 24, new bi-unitary perfect polynomials are also given. These examples substantially improve our knowledge about these kinds of polynomials.
引用
收藏
页码:47 / 62
页数:16
相关论文
共 19 条
[1]  
Beard J.T.B., 1980, ATTI ACCAD NAZ LIN, V68, P397
[2]  
Beard Jr J. T. B., 1977, Atti Accad. Naz. Lincei Rend. CI. Sci. Fis. Mat. Nat., V63, P294
[3]  
Beard Jr J. T. B., 1977, Atti Accad. Naz. Lincei Rend. CI. Sci. Fis. Mat. Nat., V62, P417
[4]  
Beard Jr J. T. B., 1977, Atti Accad. Naz. Lincei Rend. CI. Sci. Fis. Mat. Nat., V62, P283
[5]  
Beard Jr J.T.B., 1979, ATTI ACCAD NAZ LIN, V66, P179
[6]   BI-UNITARY PERFECT POLYNOMIALS OVER GF(G) [J].
BEARD, JTB .
ANNALI DI MATEMATICA PURA ED APPLICATA, 1987, 149 :61-68
[7]   ARE ALL PRIMES 32K+17(K GREATER-THAN 0) SQUARE SEPARABLE [J].
BEARD, JTB .
AMERICAN MATHEMATICAL MONTHLY, 1980, 87 (09) :744-745
[8]  
BEARD JTB, 1991, PUBL MATH-DEBRECEN, V38, P5
[9]  
Canaday E. F., 1941, Duke Math. J., V8, P721, DOI [10.1215/S0012-7094-41-00861-X, DOI 10.1215/S0012-7094-41-00861-X]
[10]  
Gallardo LH, 2014, ACTA MATH UNIV COMEN, V83, P93