Prospects and Challenges of the Machine Learning and Data-Driven Methods for the Predictive Analysis of Power Systems: A Review

被引:31
|
作者
Strielkowski, Wadim [1 ]
Vlasov, Andrey [2 ]
Selivanov, Kirill [2 ]
Muraviev, Konstantin [2 ]
Shakhnov, Vadim [2 ]
机构
[1] Czech Univ Life Sci Prague, Fac Econ & Management, Dept Trade & Finance, Kamycka 129, Prague 16500, Czech Republic
[2] Bauman Moscow State Tech Univ, Dept Design & Technol Elect Devices, 2-aj Baumanskaj Str 5-1, Moscow 105005, Russia
关键词
machine learning; power systems; smart grids; renewable energy; internet of energy; DEMAND-SIDE MANAGEMENT; OF-THE-ART; RENEWABLE ENERGY; ARTIFICIAL-INTELLIGENCE; BIG DATA; DATA ANALYTICS; SMART METERS; FUTURE; INTERNET; LOAD;
D O I
10.3390/en16104025
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The use of machine learning and data-driven methods for predictive analysis of power systems offers the potential to accurately predict and manage the behavior of these systems by utilizing large volumes of data generated from various sources. These methods have gained significant attention in recent years due to their ability to handle large amounts of data and to make accurate predictions. The importance of these methods gained particular momentum with the recent transformation that the traditional power system underwent as they are morphing into the smart power grids of the future. The transition towards the smart grids that embed the high-renewables electricity systems is challenging, as the generation of electricity from renewable sources is intermittent and fluctuates with weather conditions. This transition is facilitated by the Internet of Energy (IoE) that refers to the integration of advanced digital technologies such as the Internet of Things (IoT), blockchain, and artificial intelligence (AI) into the electricity systems. It has been further enhanced by the digitalization caused by the COVID-19 pandemic that also affected the energy and power sector. Our review paper explores the prospects and challenges of using machine learning and data-driven methods in power systems and provides an overview of the ways in which the predictive analysis for constructing these systems can be applied in order to make them more efficient. The paper begins with the description of the power system and the role of the predictive analysis in power system operations. Next, the paper discusses the use of machine learning and data-driven methods for predictive analysis in power systems, including their benefits and limitations. In addition, the paper reviews the existing literature on this topic and highlights the various methods that have been used for predictive analysis of power systems. Furthermore, it identifies the challenges and opportunities associated with using these methods in power systems. The challenges of using these methods, such as data quality and availability, are also discussed. Finally, the review concludes with a discussion of recommendations for further research on the application of machine learning and data-driven methods for the predictive analysis in the future smart grid-driven power systems powered by the IoE.
引用
收藏
页数:31
相关论文
共 50 条
  • [41] A Data-Driven Analysis of Outage Duration in Power Distribution Systems
    Doostan, Milad
    Chowdhury, Badrul H.
    2017 NORTH AMERICAN POWER SYMPOSIUM (NAPS), 2017,
  • [42] Data-Driven Meets Theory-Driven Research in the Era of Big Data: Opportunities and Challenges for Information Systems Research
    Maass, Wolfgang
    Parsons, Jeffrey
    Purao, Sandeep
    Storey, Veda C.
    Woo, Carson
    JOURNAL OF THE ASSOCIATION FOR INFORMATION SYSTEMS, 2018, 19 (12): : 1253 - 1273
  • [43] Towards Data-Driven Network Intrusion Detection Systems: Features Dimensionality Reduction and Machine Learning
    Maabreh M.
    Obeidat I.
    Elsoud E.A.
    Alnajjai A.
    Alzyoud R.
    Darwish O.
    International Journal of Interactive Mobile Technologies, 2022, 16 (14) : 123 - 135
  • [44] A Review on Data-Driven Security Assessment of Power Systems: Trends and Applications of Artificial Intelligence
    Mehrzad, Alireza
    Darmiani, Milad
    Mousavi, Yashar
    Shafie-Khah, Miadreza
    Aghamohammadi, Mohammadreza
    IEEE ACCESS, 2023, 11 : 78671 - 78685
  • [45] Integrating Structural Vulnerability Analysis and Data-Driven Machine Learning to Evaluate Storm Impacts on the Power Grid
    Peterwatson, Peter L.
    Hughes, William
    Cerrai, Diego
    Zhang, Wei
    Bagtzoglou, Amvrossios
    Anagnostou, Emmanouil
    IEEE ACCESS, 2024, 12 : 63568 - 63583
  • [46] Systems biology and data-driven machine learning-based models in personalized cardiovascular medicine
    Hueso, Miguel
    Rotllan, Noemi
    Escola-Gil, Joan Carles
    Vellido, Alfredo
    FRONTIERS IN CARDIOVASCULAR MEDICINE, 2023, 10
  • [47] Data-Driven Machine Learning Methods for Nontechnical Losses of Electrical Energy Detection: A State-of-the-Art Review
    Pazderin, Andrey
    Kamalov, Firuz
    Gubin, Pavel Y.
    Safaraliev, Murodbek
    Samoylenko, Vladislav
    Mukhlynin, Nikita
    Odinaev, Ismoil
    Zicmane, Inga
    ENERGIES, 2023, 16 (21)
  • [48] Reimagining multi-criterion decision making by data-driven methods based on machine learning: A literature review
    Liao, Huchang
    He, Yangpeipei
    Wu, Xueyao
    Wu, Zheng
    Bausys, Romualdas
    INFORMATION FUSION, 2023, 100
  • [49] Data-driven evaluation of machine learning models for climate control in operational smart greenhouses
    Morales-Garcia, Juan
    Bueno-Crespo, Andres
    Martinez-Espana, Raquel
    Cecilia, Jose M.
    JOURNAL OF AMBIENT INTELLIGENCE AND SMART ENVIRONMENTS, 2023, 15 (01) : 3 - 17
  • [50] A Review of Data-Driven Machinery Fault Diagnosis Using Machine Learning Algorithms
    Jian Cen
    Zhuohong Yang
    Xi Liu
    Jianbin Xiong
    Honghua Chen
    Journal of Vibration Engineering & Technologies, 2022, 10 : 2481 - 2507