Fe-Doped NiCo2Se4 Nanorod Arrays as Electrocatalysts for Overall Electrochemical Water Splitting

被引:45
作者
Rathore, Divya [1 ]
Ghosh, Swarup [2 ]
Chowdhury, Joydeep [2 ]
Pande, Surojit [1 ]
机构
[1] Birla Inst Technol & Sci, Dept Chem, Pilani 333031, Rajasthan, India
[2] Jadavpur Univ, Dept Phys, Kolkata 700032, India
关键词
transition metal chalcogenide; doping; nanorod array; overall water splitting; Faradaic efficiency; DFT calculations; BIFUNCTIONAL ELECTROCATALYST; ELECTRONIC-STRUCTURE; COBALT SULFIDE; NICKEL FOAM; EVOLUTION; EFFICIENT; HYDROGEN; OXYGEN; CATALYST; SELENIDE;
D O I
10.1021/acsanm.3c00265
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The development of efficient, affordable, and earth-abundant bifunctional electrocatalysts is vital for the water-splitting reaction. In this article, we have fabricated NiCo2Se4 and Fe-doped NiCo2Se4 through a simple hydrothermal route on the surface of carbon cloth with nanorod morphology. The developed electrocatalyst was thoroughly investigated by various techniques like PXRD, XPS, FESEM, ICP-AES, and TEM analysis. The optimized Fe0.2NiCo1.8Se4 has worked finest for hydrogen and oxygen evolution in an alkaline medium; it entails a potential of 148 mV and 1.656 V vs RHE to obtain 50 and 100 mA/cm2 current densities for HER and OER, respectively. The Tafel slope values for HER and OER are 85.7 and 56.3 mV/dec, respectively. This catalyst is stable under an alkaline medium for 48 h. The best HER and OER activity recommends the catalyst as a bifunctional in an alkaline medium, and the developed cell consisting of a doped sample requires 1.51 V to generate a 10 mA/cm2 current density with 24 h of stability. The Fe0.2NiCo1.8Se4 catalyst has a good Faradaic efficiency of 89.9% for overall water splitting. The nanorod morphology has a specific role in enhancing the electron transportation and conductivity of Fe0.2NiCo1.8Se4. The doping with Fe in NiCo2Se4 enhances the active sites and increases its electrocatalytic performance. The SCN- poisoning effect on metal ions in Fe0.2NiCo1.8Se4 suggests that Fe, Co, and Ni metals have a prominent impact on the overall electrocatalytic activity. Additionally, DFT investigation indicates that after Fe doping in a NiCo2Se4 zero band gap, minimum Gibbs free energy, maximum hydrogen, and oxygen coverage calculations are accountable for the higher conductivity of the system. This research provides a simple approach for synthesizing a Fe-doped ternary NiCo2Se4 nanorod array on the surface of carbon cloth, which is highly active and stable for water splitting in an alkaline medium.
引用
收藏
页码:3095 / 3110
页数:16
相关论文
共 50 条
  • [31] Coupling effect and electronic modulation for synergistically enhanced overall alkaline water splitting on bifunctional Fe-doped CoBi/CoP nanoneedle arrays
    Cao, Yihua
    Yin, Xueli
    Gan, Yonghao
    Ye, Ying
    Cai, Run
    Feng, Bo
    Wang, Qi
    Dai, Xiaoping
    Zhang, Xin
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2023, 652 : 1703 - 1711
  • [32] Rational Design of Vanadium-Modulated Ni3Se2 Nanorod@Nanosheet Arrays as a Bifunctional Electrocatalyst for Overall Water Splitting
    He, Danyang
    Cao, Liyun
    Huang, Jianfeng
    Feng, Yongqiang
    Li, Guodong
    Yang, Dan
    Huang, Qingqing
    Feng, Liangliang
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2021, 9 (35) : 12005 - 12016
  • [33] Structural engineering of Fe-doped Ni2P nanosheets arrays for enhancing bifunctional electrocatalysis towards overall water splitting
    Li, Menggang
    Wang, Junfeng
    Guo, Xin
    Li, Jiaming
    Huang, Yarong
    Geng, Shuo
    Yu, Yongsheng
    Liu, Yequn
    Yang, Weiwei
    APPLIED SURFACE SCIENCE, 2021, 536
  • [34] Hierarchically Structured CuCo2S4 Nanowire Arrays as Efficient Bifunctional Electrocatalyst for Overall Water Splitting
    Czioska, Steffen
    Wang, Jianying
    Teng, Xue
    Chen, Zuofeng
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2018, 6 (09): : 11877 - 11883
  • [35] Hierarchical NiCo2O4 Hollow Microcuboids as Bifunctional Electrocatalysts for Overall Water-Splitting
    Gao, Xuehui
    Zhang, Hongxiu
    Li, Quanguo
    Yu, Xuegong
    Hong, Zhanglian
    Zhang, Xingwang
    Liang, Chengdu
    Lin, Zhan
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (21) : 6290 - 6294
  • [36] Hierarchical NiCo2S4@NiMoO4 nanotube arrays on nickel foam as an advanced bifunctional electrocatalyst for efficient overall water splitting
    Pan, Zhiyi
    Tang, Zheng
    Sun, Dan
    Zhan, Yongzhong
    ELECTROCHIMICA ACTA, 2022, 436
  • [37] Self-supported Fe, Mn-co-doped NiCo2Se4 nanorods on nickel foam for enhanced electrocatalytic performance in wide pH range
    Pan, Zhiyi
    Zhan, Yongzhong
    Yaseen, Muhammad
    Shen, Pei Kang
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 63 : 265 - 273
  • [38] Impact of Atomic Rearrangement and Single Atom Stabilization on MoSe2@NiCo2Se4 Heterostructure Catalyst for Efficient Overall Water Splitting
    Majumdar, Abhisek
    Dutta, Pronoy
    Sikdar, Anirban
    Lee, Heehyeon
    Ghosh, Debasis
    Jha, Sambhu Nath
    Tripathi, Shilpa
    Oh, Yongtak
    Maiti, Uday Narayan
    SMALL, 2022, 18 (19)
  • [39] Nickel foam supported Cr-doped NiCo2O4/FeOOH nanoneedle arrays as a high-performance bifunctional electrocatalyst for overall water splitting
    Liu, Tengyi
    Diao, Peng
    NANO RESEARCH, 2020, 13 (12) : 3299 - 3309
  • [40] A highly efficient Fe-doped Ni3S2 electrocatalyst for overall water splitting
    Min Wang
    Li Zhang
    Jialiang Pan
    Meirong Huang
    Hongwei Zhu
    Nano Research, 2021, 14 : 4740 - 4747