Semi-supervised multi-label learning with missing labels by exploiting feature-label correlations

被引:2
|
作者
Li, Runxin [1 ]
Zhao, Xuefeng [2 ]
Shang, Zhenhong [2 ]
Jia, Lianyin [2 ,3 ]
机构
[1] Kunming Univ Sci & Technol, Yunnan Key Lab Comp Technol Applicat, Kunming, Peoples R China
[2] Kunming Univ Sci & Technol, Fac Informat Engn & Automat, Kunming, Peoples R China
[3] Kunming Univ Sci & Technol, Fac Informat Engn & Automat, Kunming 650500, Peoples R China
基金
中国国家自然科学基金;
关键词
label correlations; multi-label learning; semi-supervised learning; CLASSIFICATION;
D O I
10.1002/sam.11607
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The majority of multi-learning techniques now in use presuppose that there will be enough labeled instances. But in real-world applications, it is frequently the case that only partial labels are included for each training instance. This is either because getting a fully labeled training set takes a lot of time and effort or because doing so is expensive. Multi-label learning with missing labels, on the other hand, has greater practical value. In this paper, we propose a brand-new semi-supervised multi-label learning method (SMLMFC) that specifically addresses missing-label scenarios. After successfully filling in the missing labels for instances using two-stage label correlations, SMLMFC trains a semi-supervised multi-label classifier by imposing feature-label correlation restrictions directly on the output of labels. The complex relationships between features and labels can be learned and implicitly captured through feature-label correlations, in particular. The experimental results on a number of real-world multi-label datasets confirm that SMLMFC has strong competitiveness in comparison to other state-of-the-art methods.
引用
收藏
页码:187 / 209
页数:23
相关论文
共 50 条
  • [31] Multi-label learning with missing and completely unobserved labels
    Huang, Jun
    Xu, Linchuan
    Qian, Kun
    Wang, Jing
    Yamanishi, Kenji
    DATA MINING AND KNOWLEDGE DISCOVERY, 2021, 35 (03) : 1061 - 1086
  • [32] MER 2023: Multi-label Learning, Modality Robustness, and Semi-Supervised Learning
    Lian, Zheng
    Sun, Haiyang
    Sun, Licai
    Chen, Kang
    Xu, Mingyu
    Wang, Kexin
    Xu, Ke
    He, Yu
    Li, Ying
    Zhao, Jinming
    Liu, Ye
    Liu, Bin
    Yi, Jiangyan
    Wang, Meng
    Cambria, Erik
    Zhao, Guoying
    Schuller, Bjorn W.
    Tao, Jianhua
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 9610 - 9614
  • [33] Multi-Label Feature Selection with Feature-Label Subgraph Association and Graph Representation Learning
    Ruan, Jinghou
    Wang, Mingwei
    Liu, Deqing
    Chen, Maolin
    Gao, Xianjun
    ENTROPY, 2024, 26 (11)
  • [34] Semi-supervised multi-label feature selection with local logic information preserved
    Yao Zhang
    Yingcang Ma
    Xiaofei Yang
    Hengdong Zhu
    Ting Yang
    Advances in Computational Intelligence, 2021, 1 (5):
  • [35] Semi-supervised multi-label cardiovascular diseases detection via contrastive learning and label inference
    Wang, Ning
    Wang, Haiyan
    Feng, Panpan
    Li, Shihua
    Tan, Jian
    Wang, Zongmin
    Zhou, Bing
    KNOWLEDGE-BASED SYSTEMS, 2025, 314
  • [36] Noisy feature decomposition-based multi-label learning with missing labels
    Ding, Jiaman
    Zhang, Yihang
    Jia, Lianyin
    Fu, Xiaodong
    Jiang, Ying
    INFORMATION SCIENCES, 2024, 662
  • [37] Applying semi-supervised learning in hierarchical multi-label classification
    Santos, Araken
    Canuto, Anne
    EXPERT SYSTEMS WITH APPLICATIONS, 2014, 41 (14) : 6075 - 6085
  • [38] Discrete Semi-supervised Multi-label Learning for Image Classification
    Xie, Liang
    He, Lang
    Shu, Haohao
    Hu, Shengyuan
    ADVANCES IN MULTIMEDIA INFORMATION PROCESSING, PT I, 2018, 11164 : 808 - 818
  • [39] Semi-supervised Learning for Multi-label Video Action Detection
    Zhang, Hongcheng
    Zhao, Xu
    Wang, Dongqi
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022, : 2124 - 2134
  • [40] Semi-supervised Multi-label Linear Discriminant Analysis
    Yu, Yanming
    Yu, Guoxian
    Chen, Xia
    Ren, Yazhou
    NEURAL INFORMATION PROCESSING, ICONIP 2017, PT I, 2017, 10634 : 688 - 698