Finite non-cyclic nilpotent group whose number of subgroups is minimal
被引:2
作者:
Meng, Wei
论文数: 0引用数: 0
h-index: 0
机构:
Guilin Univ Elect Technol, Sch Math & Comp Sci, Guilin 541004, Guangxi, Peoples R ChinaGuilin Univ Elect Technol, Sch Math & Comp Sci, Guilin 541004, Guangxi, Peoples R China
Meng, Wei
[1
]
Lu, Jiakuan
论文数: 0引用数: 0
h-index: 0
机构:
Guangxi Normal Univ, Sch Math & Stat, Guilin 541004, Guangxi, Peoples R ChinaGuilin Univ Elect Technol, Sch Math & Comp Sci, Guilin 541004, Guangxi, Peoples R China
Lu, Jiakuan
[2
]
机构:
[1] Guilin Univ Elect Technol, Sch Math & Comp Sci, Guilin 541004, Guangxi, Peoples R China
[2] Guangxi Normal Univ, Sch Math & Stat, Guilin 541004, Guangxi, Peoples R China
Let G be a finite group and s(G) denote the number of subgroups of G. Aivazidis and Muller proved that if G is a non-cyclic p-group of order p(lambda), then s(G) >= 6 whenever p(lambda) = 2(3); s(G) >= (p + 1)(lambda - 1) + 2 whenever p(lambda) not equal 2(3). In this paper, we generalize the results of Aivazidis and Muller on all finite non-cyclic nilpotent groups. Lower bounds on s(G) of non-cyclic nilpotent groups G are established.
机构:
Univ London, Queen Mary & Westfield Coll, Sch Math Sci, Mile End Rd, London E1 4NS, EnglandUniv London, Queen Mary & Westfield Coll, Sch Math Sci, Mile End Rd, London E1 4NS, England
Aivazidis, Stefanos
Mueller, Thomas
论文数: 0引用数: 0
h-index: 0
机构:
Univ London, Queen Mary & Westfield Coll, Sch Math Sci, Mile End Rd, London E1 4NS, EnglandUniv London, Queen Mary & Westfield Coll, Sch Math Sci, Mile End Rd, London E1 4NS, England
机构:
Univ London, Queen Mary & Westfield Coll, Sch Math Sci, Mile End Rd, London E1 4NS, EnglandUniv London, Queen Mary & Westfield Coll, Sch Math Sci, Mile End Rd, London E1 4NS, England
Aivazidis, Stefanos
Mueller, Thomas
论文数: 0引用数: 0
h-index: 0
机构:
Univ London, Queen Mary & Westfield Coll, Sch Math Sci, Mile End Rd, London E1 4NS, EnglandUniv London, Queen Mary & Westfield Coll, Sch Math Sci, Mile End Rd, London E1 4NS, England