Weber's Law-based Regularization for Blind Image Deblurring

被引:0
作者
Saqib, Malik Najmus [1 ]
Dawood, Hussain [2 ,3 ]
Alghamdi, Ahmed [1 ]
Dawood, Hassan [4 ]
机构
[1] Univ Jeddah, Coll Comp Sci & Engn, Jeddah, Saudi Arabia
[2] Natl Skills Univ, Dept Informat Engn Technol, Islamabad, Pakistan
[3] Univ City Sharjah, Sch Informat Technol, Skyline Univ Coll, Sharjah, U Arab Emirates
[4] Univ Engn & Technol, Dept Software Engn, Lahore, Pakistan
关键词
image deblurring; regularization; Weber's law; Weber's Law Regularization (WLR); DECONVOLUTION; ALGORITHM; NOISE; EDGE;
D O I
10.48084/etasr.6576
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Blind image deblurring aims to recover an output latent image and a blur kernel from a given blurred image. Kernel estimation is a significant step in blind image deblurring and requires a regularization technique to minimize the cost function and the edges of objects to generate a sharp image in a better way. This study proposes a new image regularization technique called Weber's Law Regularization (WLR) based on the Weber law phenomenon. The Weber ratio was used to preserve the edges of small salient objects and to minimize the cost function to obtain a sharp image while minimizing the ringing effect. To validate the WLR, experiments were conducted on benchmark synthetic and real word images and compared with existing state-of-the-art methods. The experimental results showed that WLR can effectively and efficiently deblur images even in the absence of prior knowledge.
引用
收藏
页码:12937 / 12943
页数:7
相关论文
共 54 条
  • [1] Alqethami S, 2022, ENG TECHNOL APPL SCI, V12, P8335
  • [2] Blind Image Deconvolution Using Deep Generative Priors
    Asim, Muhammad
    Shamshad, Fahad
    Ahmed, Ali
    [J]. IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2020, 6 : 1493 - 1506
  • [3] Babacan SD, 2012, LECT NOTES COMPUT SC, V7577, P341, DOI 10.1007/978-3-642-33783-3_25
  • [4] Variational Bayesian Blind Deconvolution Using a Total Variation Prior
    Babacan, S. Derin
    Molina, Rafael
    Katsaggelos, Aggelos K.
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2009, 18 (01) : 12 - 26
  • [5] Graph-Based Blind Image Deblurring From a Single Photograph
    Bai, Yuanchao
    Cheung, Gene
    Liu, Xianming
    Gao, Wen
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 28 (03) : 1404 - 1418
  • [6] A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems
    Beck, Amir
    Teboulle, Marc
    [J]. SIAM JOURNAL ON IMAGING SCIENCES, 2009, 2 (01): : 183 - 202
  • [7] SEBR: Scharr Edge-Based Regularization Method for Blind Image Deblurring
    Bibi, Nazia
    Dawood, Hassan
    [J]. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2024, 49 (03) : 3435 - 3451
  • [8] Total variation blind deconvolution
    Chan, TF
    Wong, CK
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 1998, 7 (03) : 370 - 375
  • [9] WLD: A Robust Local Image Descriptor
    Chen, Jie
    Shan, Shiguang
    He, Chu
    Zhao, Guoying
    Pietikainen, Matti
    Chen, Xilin
    Gao, Wen
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2010, 32 (09) : 1705 - 1720
  • [10] Deep Richardson-Lucy Deconvolution for Low-Light Image Deblurring
    Chen, Liang
    Zhang, Jiawei
    Li, Zhenhua
    Wei, Yunxuan
    Fang, Faming
    Ren, Jimmy
    Pan, Jinshan
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2024, 132 (02) : 428 - 445