Arbuscular Mycorrhizal Fungi Alleviates Salt-Alkali Stress Demage on Syneilesis aconitifolia

被引:0
|
作者
Fang, Linlin [1 ]
Xu, Jiamei [1 ]
Yang, Chunxue [1 ]
机构
[1] Northeast Forestry Univ, Coll Landscape Architecture, Harbin 150040, Peoples R China
基金
中国国家自然科学基金;
关键词
Physiological property; antioxidant system; osmotic regulation; abiotic stress; medicinal plant; CHEMICAL-CONSTITUENTS; LEYMUS-CHINENSIS; GROWTH; TOLERANCE; PLANTS; PHOTOSYNTHESIS; SEEDLINGS; BALANCE; SALINE; L;
D O I
暂无
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Syneilesis aconitifolia is a potential ground cover and decorative material in gardens, which exhibits a strong salt-alkali tolerance, and also has medicinal value. In this study, the arbuscular mycorrhizal (AM) fungi community in the soil surrounding S. aconitifolia roots in the Songnen saline-alkali grassland was used as the inoculation medium for a pot cultivation experiment. After normal culture for 90 days, NaCl and NaHCO3 solutions were applied to subject plants to salt or alkali stress. Solution concentrations of 50, 100, and 200 mmol/L were applied for 10 days, and mycorrhizal colonization, biomass, relative water content (RWC), chlorophyll concentration, malondialdehyde (MDA) concentration, antioxidant system activity, and osmomodulator concentration were determined to identify the effects of AM fungi on root colonization status and salinity tolerance in S. aconitifolia. There were three key results. (1) Compared to the controls, the intensity and rate of colonization decreased under saline-alkali stress, and the adaptability of AM fungi under low concentration alkali stress was higher than that under salt stress. (2) The AM fungi could increase the biomass, RWC, and chlorophyll concentration, and decrease the MDA concentration of S. aconitifolia to some extent. With an increase in the salt or alkali solution concentration, AM fungi not only upregulated the activity of the antioxidant system, but also increased the concentration of osmotic regulatory substances. (3) A multivariate analysis of variance (ANOVA) and radar map analysis showed that the mechanisms of resistance to salt and alkali stress were not the same in S. aconitifolia. In the salt treatment, AM fungi mainly regulated salt stress through osmotic regulatory substances such as soluble sugars, soluble proteins, and proline. In the alkali treatment, AM fungi mainly regulated alkali stress through glutathione (GSH), soluble sugars, and MDA. The results showed that the colonization rate of S. aconitifolia under low concentration alkali stress was higher than that under salt stress, and the inoculation of AM fungi could significantly reduce the MDA concentration of S. aconitifolia plants under salinity and alkali stress, and improve the antioxidant enzyme activity and osmoregulatory substance accumulation, thereby improving the salinity tolerance of S. aconitifolia.
引用
收藏
页码:3195 / 3209
页数:15
相关论文
共 50 条
  • [31] Impact of two arbuscular mycorrhizal fungi on Arundo donax L. response to salt stress
    Susanna Pollastri
    Andreas Savvides
    Massimo Pesando
    Erica Lumini
    Maria Grazia Volpe
    Elif Aylin Ozudogru
    Antonella Faccio
    Fausta De Cunzo
    Marco Michelozzi
    Maurizio Lambardi
    Vasileios Fotopoulos
    Francesco Loreto
    Mauro Centritto
    Raffaella Balestrini
    Planta, 2018, 247 : 573 - 585
  • [32] Effects of arbuscular mycorrhizal fungi on photosynthesis and chlorophyll fluorescence of maize seedlings under salt stress
    Xu, Hongwen
    Lu, Yan
    Tong, Shuyuan
    EMIRATES JOURNAL OF FOOD AND AGRICULTURE, 2018, 30 (03): : 199 - 204
  • [33] Hyperaccumulators, arbuscular mycorrhizal fungi and stress of heavy metals
    Miransari, Mohammad
    BIOTECHNOLOGY ADVANCES, 2011, 29 (06) : 645 - 653
  • [34] Effects of arbuscular mycorrhizal fungi on growth and nitrogen uptake of Chrysanthemum morifolium under salt stress
    Wang, Yanhong
    Wang, Minqiang
    Li, Yan
    Wu, Aiping
    Huang, Juying
    PLOS ONE, 2018, 13 (04):
  • [35] Dopamine and arbuscular mycorrhizal fungi act synergistically to promote apple growth under salt stress
    Gao, Tengteng
    Liu, Xiaomin
    Shan, Lei
    Wu, Qian
    Liu, Yuan
    Zhang, Zhijun
    Ma, Fengwang
    Li, Chao
    ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2020, 178
  • [36] Arbuscular mycorrhizal fungi and salinity stress mitigation in plants
    Boorboori, Mohammad Reza
    Lackoova, Lenka
    FRONTIERS IN PLANT SCIENCE, 2025, 15
  • [37] Arbuscular mycorrhizal symbiosis influences strigolactone production under salinity and alleviates salt stress in lettuce plants
    Aroca, Ricardo
    Manuel Ruiz-Lozano, Juan
    Maria Zamarreno, Angel
    Antonio Paz, Jose
    Maria Garcia-Mina, Jose
    Jose Pozo, Maria
    Antonio Lopez-Raez, Juan
    JOURNAL OF PLANT PHYSIOLOGY, 2013, 170 (01) : 47 - 55
  • [38] Inoculation with Arbuscular Mycorrhizal Fungi Alleviates the Adverse Effects of High Temperature in Soybean
    Jumrani, Kanchan
    Bhatia, Virender Singh
    Kataria, Sunita
    Alamri, Saud A.
    Siddiqui, Manzer H.
    Rastogi, Anshu
    PLANTS-BASEL, 2022, 11 (17):
  • [39] Arbuscular mycorrhizal fungi and foliar phosphorus inorganic supply alleviate salt stress effects in physiological attributes, but only arbuscular mycorrhizal fungi increase biomass in woody species of a semiarid environment
    Frosi, Gabriella
    Barros, Vanessa Andrade
    Oliveira, Marciel Teixeira
    Santos, Mariana
    Ramos, Diego Gomes
    Maia, Leonor Costa
    Santos, Mauro Guida
    TREE PHYSIOLOGY, 2018, 38 (01) : 25 - 36
  • [40] Effect of salt-alkali stress on seed germination of the halophyte Halostachys caspica
    Zhang, Rui
    Zhang, Huizhen
    Wang, Lai
    Zeng, Youling
    SCIENTIFIC REPORTS, 2024, 14 (01):