Synergistic enhancement of Li-rich manganese-based cathode materials through single crystallization and in-situ spinel coating

被引:40
作者
Wang, Lei [1 ,2 ]
Xu, Lei [2 ]
Xue, Weiran [2 ,3 ]
Fang, Qiu [2 ]
Liu, Huan [1 ]
Liu, Yuying [1 ]
Zhou, Kun [2 ,3 ]
Li, Yapei [2 ]
Wang, Xuelong [2 ]
Wang, Xuefeng [2 ]
Yang, Xiukang [1 ]
Yu, Xiqian [2 ,3 ]
Wang, Xianyou [1 ]
机构
[1] Xiangtan Univ, Key Lab Environmentally Friendly Chem & Applicat M, Hunan Prov Key Lab Electrochem Energy Storage & Co, Natl Base Int Sci & Technol Cooperat,Sch Chem, Xiangtan 411105, Hunan, Peoples R China
[2] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China
[3] Univ Chinese Acad Sci, Coll Mat Sci & Optoelect Technol, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium-rich manganese-based layered oxide; Single crystal; Cathode; Lithium-ion batteries; In situ coating; CRYSTAL; INTERFACE;
D O I
10.1016/j.nanoen.2023.109241
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Lithium -rich manganese -based cathode (LRM) materials are considered the most promising cathode for the nextgeneration high -energy -density Li -ion batteries due to their high specific discharge capacity. However, the current mainstream LRM materials exhibit a polycrystalline morphology, and the degradation of this morphology during extended cycling exacerbates structural distortions, leading to poor cycle stability. Herein, a spinel phase encapsulated single -crystal LRM material with a particle size of about 500 nm is prepared through a simple molten -salt assistant solid-state synthesis method utilizing traditional polycrystalline LRM precursor, followed by boric acid treatment. Combined with various characterizations, the surface coating layer of obtained singlecrystal LRM materials is identified as spinel Li4Mn5O12 with a thickness of about 5 nm, which effectively enhances Li+ diffusion kinetics. Benefited from the collaborative strategy of single crystallization and spinel coating which strength Li+ conduction and suppresses particle cracking, the single -crystal LRM materials achieve a specific discharge capacity of 296.3 mAh g-1 at 0.1 C (1 C = 250 mA g-1), yielding a capacity retention of 97.4% after 300 cycles at 1 C. This study offers a universal and easy industrial scale -up approach for developing singlecrystal LRM cathode materials with long cycling stability, which promotes the commercial utilization of singlecrystal LRM cathode.
引用
收藏
页数:11
相关论文
共 41 条
[1]   XPS investigation of Mn valence in lanthanum manganite thin films under variation of oxygen content [J].
Beyreuther, E ;
Grafström, S ;
Eng, LM ;
Thiele, C ;
Dörr, K .
PHYSICAL REVIEW B, 2006, 73 (15)
[2]   Stable heteroepitaxial interface of Li-rich layered oxide cathodes with enhanced lithium storage [J].
Ding, Zhengping ;
Zhang, Chunxiao ;
Xu, Sheng ;
Liu, Jiatu ;
Liang, Chaoping ;
Chen, Libao ;
Wang, Peng ;
Ivey, Douglas G. ;
Deng, Yida ;
Wei, Weifeng .
ENERGY STORAGE MATERIALS, 2019, 21 :69-76
[3]   Regulation of Interfacial Lattice Oxygen Activity by Full-Surface Modification Engineering towards Long Cycling Stability for Co-Free Li-Rich Mn-Based Cathode [J].
Guo, Weibin ;
Zhang, Yinggan ;
Lin, Liang ;
Liu, Yuanyuan ;
Fan, Mengjian ;
Gao, Guiyang ;
Wang, Shihao ;
Sa, Baisheng ;
Lin, Jie ;
Luo, Qing ;
Qu, Baihua ;
Wang, Laisen ;
Shi, Ji ;
Xie, Qingshui ;
Peng, Dong-Liang .
SMALL, 2023, 19 (21)
[4]   A Universal Strategy toward the Precise Regulation of Initial Coulombic Efficiency of Li-Rich Mn-Based Cathode Materials [J].
Guo, Weibin ;
Zhang, Chenying ;
Zhang, Yinggan ;
Lin, Liang ;
He, Wei ;
Xie, Qingshui ;
Sa, Baisheng ;
Wang, Laisen ;
Peng, Dong-Liang .
ADVANCED MATERIALS, 2021, 33 (38)
[5]   Structural insights into the formation and voltage degradation of lithium- and manganese-rich layered oxides [J].
Hua, Weibo ;
Wang, Suning ;
Knapp, Michael ;
Leake, Steven J. ;
Senyshyn, Anatoliy ;
Richter, Carsten ;
Yavuz, Murat ;
Binder, Joachim R. ;
Grey, Clare P. ;
Ehrenberg, Helmut ;
Indris, Sylvio ;
Schwarz, Bjoern .
NATURE COMMUNICATIONS, 2019, 10 (1)
[6]   Lattice-Oxygen-Stabilized Li- and Mn-Rich Cathodes with Sub-Micrometer Particles by Modifying the Excess-Li Distribution [J].
Hwang, Jaeseong ;
Myeong, Seungjun ;
Lee, Eunryeol ;
Jang, Haeseong ;
Yoon, Moonsu ;
Cha, Hyungyeon ;
Sung, Jaekyung ;
Kim, Min Gyu ;
Seo, Dong-Hwa ;
Cho, Jaephil .
ADVANCED MATERIALS, 2021, 33 (18)
[7]   High-Capacity Oxide Cathode beyond 300 mAh/g Focus Review [J].
Jiao, Sichen ;
Wang, Junyang ;
Hu, Yong-Sheng ;
Yu, Xiqian ;
Li, Hong .
ACS ENERGY LETTERS, 2023, 8 (07) :3025-3037
[8]   Understanding the Effect of Local Short-Range Ordering on Lithium Diffusion in Li1.3Nb0.3Mn0.4O2 Single-Crystal Cathode [J].
Kan, Wang Hay ;
Deng, Biao ;
Xu, Yahong ;
Shukla, Alpesh Khushalchand ;
Bo, Tao ;
Zhang, Shuo ;
Liu, Jin ;
Pianetta, Piero ;
Wang, Bao-Tian ;
Liu, Yijin ;
Chen, Guoying .
CHEM, 2018, 4 (09) :2108-2123
[9]   Manipulating the Electronic Structure of Li-Rich Manganese-Based Oxide Using Polyanions: Towards Better Electrochemical Performance [J].
Li, Biao ;
Yan, Huijun ;
Ma, Jin ;
Yu, Pingrong ;
Xia, Dingguo ;
Huang, Weifeng ;
Chu, Wangsheng ;
Wu, Ziyu .
ADVANCED FUNCTIONAL MATERIALS, 2014, 24 (32) :5112-5118
[10]   Investigations on the Fundamental Process of Cathode Electrolyte Interphase Formation and Evolution of High-Voltage Cathodes [J].
Li, Qinghao ;
Wang, Yi ;
Wang, Xuelong ;
Sun, Xiaorui ;
Zhang, Jie-Nan ;
Yu, Xiqian ;
Li, Hong .
ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (02) :2319-2326