Cropland Inundation Mapping in Rugged Terrain Using Sentinel-1 and Google Earth Imagery: A Case Study of 2022 Flood Event in Fujian Provinces

被引:1
作者
Ku, Mengjun [1 ,2 ]
Jiang, Hao [2 ]
Jia, Kai [2 ]
Dai, Xuemei [2 ]
Xu, Jianhui [2 ]
Li, Dan [2 ]
Wang, Chongyang [2 ]
Qin, Boxiong [2 ]
机构
[1] Guangdong Univ Technol, Dept Surveying Engn, Guangzhou 510006, Peoples R China
[2] Guangdong Acad Sci, Guangzhou Inst Geog, Guangdong Open Lab Geospatial Informat Technol & A, Key Lab Guangdong Utilizat Remote Sensing & Geog I, Guangzhou 510070, Peoples R China
来源
AGRONOMY-BASEL | 2024年 / 14卷 / 01期
关键词
flood; Sentinel-1; sub-meter; PIDNet; inundated croplands mapping; SAR; INDEX; IMPACT; AREAS; SCALE;
D O I
10.3390/agronomy14010138
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
South China is dominated by mountainous agriculture and croplands that are at risk of flood disasters, posing a great threat to food security. Synthetic aperture radar (SAR) has the advantage of being all-weather, with the ability to penetrate clouds and monitor cropland inundation information. However, SAR data may be interfered with by noise, i.e., radar shadows and permanent water bodies. Existing cropland data derived from open-access landcover data are not accurate enough to mask out these noises mainly due to insufficient spatial resolution. This study proposed a method that extracted cropland inundation with a high spatial resolution cropland mask. First, the Proportional-Integral-Derivative Network (PIDNet) was applied to the sub-meter-level imagery to identify cropland areas. Then, Sentinel-1 dual-polarized water index (SDWI) and change detection (CD) were used to identify flood area from open water bodies. A case study was conducted in Fujian province, China, which endured several heavy rainfalls in summer 2022. The result of the Intersection over Union (IoU) of the extracted cropland data reached 89.38%, and the F1-score of cropland inundation achieved 82.35%. The proposed method provides support for agricultural disaster assessment and disaster emergency monitoring.
引用
收藏
页数:17
相关论文
共 60 条
[41]   Inundation Extent Mapping by Synthetic Aperture Radar: A Review [J].
Shen, Xinyi ;
Wang, Dacheng ;
Mao, Kebiao ;
Anagnostou, Emmanouil ;
Hong, Yang .
REMOTE SENSING, 2019, 11 (07)
[42]   Regression model to estimate flood impact on corn yield using MODIS NDVI and USDA cropland data layer [J].
Shrestha, Ranjay ;
Di, Liping ;
Yu, Eugene G. ;
Kang, Lingjun ;
Shao Yuan-zheng ;
Bai Yu-qi .
JOURNAL OF INTEGRATIVE AGRICULTURE, 2017, 16 (02) :398-407
[43]   Identifying floods and flood-affected paddy rice fields in Bangladesh based on Sentinel-1 imagery and Google Earth Engine [J].
Singha, Mrinal ;
Dong, Jinwei ;
Sarmah, Sangeeta ;
You, Nanshan ;
Zhou, Yan ;
Zhang, Geli ;
Doughty, Russell ;
Xiao, Xiangming .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2020, 166 :278-293
[44]   Assessment of Implementing Land Use/Land Cover LULC 2020-ESRI Global Maps in 2D Flood Modeling Application [J].
Soliman, Mohamed ;
Morsy, Mohamed M. ;
Radwan, Hany G. .
WATER, 2022, 14 (23)
[45]   River flood mapping in urban areas combining Radarsat-2 data and flood return period data [J].
Tanguy, Marion ;
Chokmani, Karem ;
Bernier, Monique ;
Poulin, Jimmy ;
Raymond, Sebastien .
REMOTE SENSING OF ENVIRONMENT, 2017, 198 :442-459
[46]  
Tavus B., 2018, Int Arch Photogramm Remote Sens Spat Inf Sci XLII, VXLII-5, P575, DOI [10.5194/isprs-archives-XLII-5-575-2018, DOI 10.5194/ISPRS-ARCHIVES-XLII-5-575-2018]
[47]   An approach for flood monitoring by the combined use of Landsat 8 optical imagery and COSMO-SkyMed radar imagery [J].
Tong, Xiaohua ;
Luo, Xin ;
Liu, Shuguang ;
Xie, Huan ;
Chao, Wei ;
Liu, Shuang ;
Liu, Shijie ;
Makhinov, A. N. ;
Makhinova, A. F. ;
Jiang, Yuying .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2018, 136 :144-153
[48]   GMES Sentinel-1 mission [J].
Torres, Ramon ;
Snoeij, Paul ;
Geudtner, Dirk ;
Bibby, David ;
Davidson, Malcolm ;
Attema, Evert ;
Potin, Pierre ;
Rommen, BjOern ;
Floury, Nicolas ;
Brown, Mike ;
Traver, Ignacio Navas ;
Deghaye, Patrick ;
Duesmann, Berthyl ;
Rosich, Betlem ;
Miranda, Nuno ;
Bruno, Claudio ;
L'Abbate, Michelangelo ;
Croci, Renato ;
Pietropaolo, Andrea ;
Huchler, Markus ;
Rostan, Friedhelm .
REMOTE SENSING OF ENVIRONMENT, 2012, 120 :9-24
[49]   Operational Flood Mapping Using Multi-Temporal Sentinel-1 SAR Images: A Case Study from Bangladesh [J].
Uddin, Kabir ;
Matin, Mir A. ;
Meyer, Franz J. .
REMOTE SENSING, 2019, 11 (13)
[50]   Land inundation and cropping intensity influences on organic carbon in the agricultural soils of Bangladesh [J].
Uddin, M. J. ;
Hooda, Peter S. ;
Mohiuddin, A. S. M. ;
Smith, Mike ;
Waller, Martyn .
CATENA, 2019, 178 :11-19