GLOBAL SOLUTIONS TO NONLINEAR WAVE EQUATIONS ARISING FROM A VARIATIONAL PRINCIPLE

被引:1
作者
Zeng, Ying [1 ]
Hu, Yanbo [2 ,3 ]
机构
[1] Quzhou Univ, Coll Teacher Educ, Quzhou 324000, Peoples R China
[2] Zhejiang Univ Sci & Technol, Dept Math, Hangzhou 310023, Peoples R China
[3] Hangzhou Normal Univ, Sch Math, Hangzhou 311121, Peoples R China
来源
JOURNAL OF NONLINEAR AND VARIATIONAL ANALYSIS | 2024年 / 8卷 / 01期
基金
美国国家科学基金会;
关键词
Existence; Energy-dependent coordinates; Nonlinear wave equations; Weak solutions; CONSERVATIVE SOLUTIONS; WEAK SOLUTIONS; SYSTEM; REGULARITY; EXISTENCE;
D O I
10.23952/jnva.8.2024.1.01
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we establish the global existence of weak solutions to the initial-boundary value and initial value problems for two classes of nonlinear wave equations which are the Euler-Lagrange equation of a variational principle. We use the method of energy-dependent coordinates to rewrite these equations as semilinear systems and resolve all singularities by introducing a new set of dependent and independent variables. The global weak solutions can be constructed by expressing the solutions of these semilinear systems in terms of the original variables.
引用
收藏
页码:1 / 21
页数:21
相关论文
共 32 条
[1]   Diffractive nonlinear geometrical optics for variational wave equations and the Einstein equations [J].
Ali, Giuseppe ;
Hunter, John K. .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2007, 60 (10) :1522-1557
[2]   ORIENTATION WAVES IN A DIRECTOR FIELD WITH ROTATIONAL INERTIA [J].
Ali, Giuseppe ;
Hunter, John K. .
KINETIC AND RELATED MODELS, 2009, 2 (01) :1-37
[3]   Conservative solutions to a nonlinear variational wave equation [J].
Bressan, Alberto ;
Zheng, Yuxi .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 266 (02) :471-497
[4]   Lipschitz Metrics for a Class of Nonlinear Wave Equations [J].
Bressan, Alberto ;
Chen, Geng .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2017, 226 (03) :1303-1343
[5]   Generic regularity of conservative solutions to a nonlinear wave equation [J].
Bressan, Alberto ;
Chen, Geng .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2017, 34 (02) :335-354
[6]  
Bressan A, 2016, COMMUN MATH SCI, V14, P31
[7]   Unique Conservative Solutions to a Variational Wave Equation [J].
Bressan, Alberto ;
Chen, Geng ;
Zhang, Qingtian .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2015, 217 (03) :1069-1101
[8]   A Finsler type Lipschitz optimal transport metric for a quasilinear wave equation [J].
Cai, Hong ;
Chen, Geng ;
Shen, Yannan .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 356 :289-335
[9]   Uniqueness of conservative solutions to a one-dimensional general quasilinear wave equation through variational principle [J].
Cai, Hong ;
Chen, Geng ;
Du, Yi ;
Shen, Yannan .
JOURNAL OF MATHEMATICAL PHYSICS, 2022, 63 (02)
[10]   Uniqueness and regularity of conservative solution to a wave system modeling nematic liquid crystal [J].
Cai, Hong ;
Chen, Geng ;
Du, Yi .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2018, 117 :185-220