Carleman inequalities and unique continuation for the polyharmonic operators

被引:0
|
作者
Jeong, Eunhee [1 ]
Kwon, Yehyun [2 ]
Lee, Sanghyuk [3 ,4 ]
机构
[1] Jeonbuk Natl Univ, Inst Pure & Appl Math, Dept Math Educ, Jeonju 54896, Jeonbuk, South Korea
[2] Changwon Natl Univ, Dept Math, Changwon Si 51140, Gyeongsangnam D, South Korea
[3] Seoul Natl Univ, Dept Math Sci, Seoul 151747, South Korea
[4] Seoul Natl Univ, RIM, Seoul151-747, Seoul, South Korea
关键词
Carleman inequality; Unique continuation; Polyharmonic operator; BOCHNER-RIESZ OPERATORS; NEGATIVE INDEX; POWERS; LAPLACIAN; ORDER;
D O I
10.1016/j.jde.2023.12.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain a complete characterization of Lp - Lq Carleman estimates with weight ev center dot x for the polyharmonic operators. Our result extends the Carleman inequalities for the Laplacian due to Kenig-Ruiz-Sogge. Consequently, we obtain new unique continuation properties of higher order Schrodinger equations relaxing the integrability assumption on the solution spaces.(c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:86 / 120
页数:35
相关论文
共 50 条