Evaluating the Performance of the Astral Mass Analyzer for Quantitative Proteomics Using Data-Independent Acquisition

被引:71
作者
Heil, Lilian R. [1 ]
Damoc, Eugen [2 ]
Arrey, Tabiwang N. [2 ]
Pashkova, Anna [2 ]
Denisov, Eduard [2 ]
Petzoldt, Johannes [2 ]
Peterson, Amelia C. [2 ]
Hsu, Chris [1 ]
Searle, Brian C. [3 ,4 ]
Shulman, Nicholas [1 ]
Riffle, Michael [1 ]
Connolly, Brian [1 ]
Maclean, Brendan X. [1 ]
Remes, Philip M. [5 ]
Senko, Michael W. [5 ]
Stewart, Hamish I. [2 ]
Hock, Christian [2 ]
Makarov, Alexander A. [2 ]
Hermanson, Daniel [5 ]
Zabrouskov, Vlad [5 ]
Wu, Christine C. [1 ]
Maccoss, Michael J. [1 ]
机构
[1] Univ Washington, Dept Genome Sci, Seattle, WA 98195 USA
[2] Thermo Fisher Sci, D-28199 Bremen, Germany
[3] Ohio State Univ, Pelotonia Inst Immuno Oncol, Comprehens Canc Ctr, Columbus, OH 43210 USA
[4] Ohio State Univ, Dept Biomed Informat, Columbus, OH 43210 USA
[5] Thermo Fisher Sci, San Jose, CA 95134 USA
基金
美国国家卫生研究院;
关键词
high-resolution mass spectrometry; data-independentacquisition; plasma; quantitative proteomics; SPECTROMETRY;
D O I
10.1021/acs.jproteome.3c00357
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
We evaluate the quantitative performance of the newly released Asymmetric Track Lossless (Astral) analyzer. Using data-independent acquisition, the Thermo Scientific Orbitrap Astral mass spectrometer quantifies 5 times more peptides per unit time than state-of-the-art Thermo Scientific Orbitrap mass spectrometers, which have long been the gold standard for high-resolution quantitative proteomics. Our results demonstrate that the Orbitrap Astral mass spectrometer can produce high-quality quantitative measurements across a wide dynamic range. We also use a newly developed extracellular vesicle enrichment protocol to reach new depths of coverage in the plasma proteome, quantifying over 5000 plasma proteins in a 60 min gradient with the Orbitrap Astral mass spectrometer.
引用
收藏
页码:3290 / 3300
页数:11
相关论文
共 50 条
  • [31] Optimizing data-independent acquisition (DIA) spectral library workflows for plasma proteomics studies
    Rice, Shawn J.
    Belani, Chandra P.
    [J]. PROTEOMICS, 2022, 22 (17)
  • [32] Cross-Run Hybrid Features Improve the Identification of Data-Independent Acquisition Proteomics
    Liu, Yachen
    Mei, Longfei
    Liang, Chenyu
    Zhong, Chuan-Qi
    Tong, Mengsha
    Yu, Rongshan
    [J]. ACS OMEGA, 2024, 9 (46): : 46362 - 46372
  • [33] Dedicated Software Enhancing Data-independent Acquisition Methods in Mass Spectrometry
    Bilbao, Aivett
    Lisacek, Frederique
    Hopfgartner, Gerard
    [J]. CHIMIA, 2016, 70 (04) : 293 - 293
  • [34] New targeted approaches for the quantification of data-independent acquisition mass spectrometry
    Bruderer, Roland
    Sondermann, Julia
    Tsou, Chih-Chiang
    Barrantes-Freer, Alonso
    Stadelmann, Christine
    Nesvizhskii, Alexey I.
    Schmidt, Manuela
    Reiter, Lukas
    Gomez-Varela, David
    [J]. PROTEOMICS, 2017, 17 (09)
  • [35] Capillary zone electrophoresis-tandem mass spectrometry for in-depth proteomics analysis via data-independent acquisition
    Liu, Rong
    Lu, Gang
    Hu, Xiaozhong
    Li, Junhui
    Zhang, Zhenbin
    Tang, Keqi
    [J]. ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2024, 416 (26) : 5805 - 5814
  • [36] Proteomics of exhaled breath condensate in lung cancer and controls using data-independent acquisition (DIA): a pilot study
    Ma, Lin
    Muscat, Joshua E.
    Sinha, Raghu
    Sun, Dongxiao
    Xiu, Guangli
    [J]. JOURNAL OF BREATH RESEARCH, 2021, 15 (02)
  • [37] Automated Proteomics Workflows for High-Throughput Library Generation and Biomarker Detection Using Data-Independent Acquisition
    Paramasivan, Selvam
    Morrison, Janna L.
    Lock, Mitchell C.
    Darby, Jack R. T.
    Barrero, Roberto A.
    Mills, Paul C.
    Sadowski, Pawel
    [J]. JOURNAL OF PROTEOME RESEARCH, 2023, 22 (06) : 2018 - 2029
  • [38] Strategies for consistent and automated quantification of HDL proteome using data-independent acquisition
    Souza Junior, Douglas Ricardo
    Silva, Amanda Ribeiro Martins
    Ronsein, Graziella Eliza
    [J]. JOURNAL OF LIPID RESEARCH, 2023, 64 (07)
  • [39] Comparative proteomics analysis of samples from hepatic cystic echinococcosis patients using data-independent acquisition approach
    Tuerxun, Kahaer
    Tang, Rong-Hua
    Abudoumijiti, Aabudouxikuer
    Yusupu, Zainuer
    Aikebaier, Aizemaiti
    Mijiti, Salamu
    Ibrahim, Irshat
    Cao, Yan-Long
    Yasheng, Abudoukeyimu
    Wu, Yuan-Quan
    [J]. JOURNAL OF PROTEOMICS, 2024, 301
  • [40] Stratification of follicular thyroid tumours using data-independent acquisition proteomics and a comprehensive thyroid tissue spectral library
    Sun, Yaoting
    Li, Lu
    Zhou, Yan
    Ge, Weigang
    Wang, He
    Wu, Runxin
    Liu, Wei
    Chen, Hao
    Xiao, Qi
    Cai, Xue
    Dong, Zhen
    Zhang, Fangfei
    Xiao, Junhong
    Wang, Guangzhi
    He, Yi
    Gao, Jinlong
    Kon, Oi Lian
    Iyer, Narayanan Gopalakrishna
    Guan, Haixia
    Teng, Xiaodong
    Zhu, Yi
    Zhao, Yongfu
    Guo, Tiannan
    [J]. MOLECULAR ONCOLOGY, 2022, 16 (08) : 1611 - 1624