Evaluating the Performance of the Astral Mass Analyzer for Quantitative Proteomics Using Data-Independent Acquisition

被引:71
作者
Heil, Lilian R. [1 ]
Damoc, Eugen [2 ]
Arrey, Tabiwang N. [2 ]
Pashkova, Anna [2 ]
Denisov, Eduard [2 ]
Petzoldt, Johannes [2 ]
Peterson, Amelia C. [2 ]
Hsu, Chris [1 ]
Searle, Brian C. [3 ,4 ]
Shulman, Nicholas [1 ]
Riffle, Michael [1 ]
Connolly, Brian [1 ]
Maclean, Brendan X. [1 ]
Remes, Philip M. [5 ]
Senko, Michael W. [5 ]
Stewart, Hamish I. [2 ]
Hock, Christian [2 ]
Makarov, Alexander A. [2 ]
Hermanson, Daniel [5 ]
Zabrouskov, Vlad [5 ]
Wu, Christine C. [1 ]
Maccoss, Michael J. [1 ]
机构
[1] Univ Washington, Dept Genome Sci, Seattle, WA 98195 USA
[2] Thermo Fisher Sci, D-28199 Bremen, Germany
[3] Ohio State Univ, Pelotonia Inst Immuno Oncol, Comprehens Canc Ctr, Columbus, OH 43210 USA
[4] Ohio State Univ, Dept Biomed Informat, Columbus, OH 43210 USA
[5] Thermo Fisher Sci, San Jose, CA 95134 USA
基金
美国国家卫生研究院;
关键词
high-resolution mass spectrometry; data-independentacquisition; plasma; quantitative proteomics; SPECTROMETRY;
D O I
10.1021/acs.jproteome.3c00357
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
We evaluate the quantitative performance of the newly released Asymmetric Track Lossless (Astral) analyzer. Using data-independent acquisition, the Thermo Scientific Orbitrap Astral mass spectrometer quantifies 5 times more peptides per unit time than state-of-the-art Thermo Scientific Orbitrap mass spectrometers, which have long been the gold standard for high-resolution quantitative proteomics. Our results demonstrate that the Orbitrap Astral mass spectrometer can produce high-quality quantitative measurements across a wide dynamic range. We also use a newly developed extracellular vesicle enrichment protocol to reach new depths of coverage in the plasma proteome, quantifying over 5000 plasma proteins in a 60 min gradient with the Orbitrap Astral mass spectrometer.
引用
收藏
页码:3290 / 3300
页数:11
相关论文
共 50 条
  • [21] Data-independent acquisition in metaproteomics
    Wu, Enhui
    Xu, Guanyang
    Xie, Dong
    Qiao, Liang
    EXPERT REVIEW OF PROTEOMICS, 2024, 21 (7-8) : 271 - 280
  • [22] Perspectives and opinions from scientific leaders on the evolution of data-independent acquisition for quantitative proteomics and novel biological applications
    Hunter, Christie L.
    Bons, Joanna
    Schilling, Birgit
    AUSTRALIAN JOURNAL OF CHEMISTRY, 2023, 76 (08) : 379 - 398
  • [23] Data-independent acquisition proteomics methods for analyzing post-translational modifications
    Yang, Yi
    Qiao, Liang
    PROTEOMICS, 2023, 23 (7-8)
  • [24] TopDIA: A Software Tool for Top-Down Data-Independent Acquisition Proteomics
    Basharat, Abdul Rehman
    Xiong, Xingzhao
    Xu, Tian
    Zang, Yong
    Sun, Liangliang
    Liu, Xiaowen
    JOURNAL OF PROTEOME RESEARCH, 2024, 24 (01) : 55 - 64
  • [25] A review on mass spectrometry-based quantitative proteomics: Targeted and data independent acquisition
    Vidova, Veronika
    Spacil, Zdenek
    ANALYTICA CHIMICA ACTA, 2017, 964 : 7 - 23
  • [26] Identifcation of candidate biomarkers for polyarteritis nodosa using data-independent acquisition mass spectrometry
    Ma, Huimin
    Cai, Xintian
    Zhang, Delian
    Zhu, Qing
    Wu, Ting
    Aierken, Xiayire
    Ahmat, Ayguzaili
    Liu, Shasha
    Li, Nanfang
    AMERICAN JOURNAL OF TRANSLATIONAL RESEARCH, 2025, 17 (01):
  • [27] Scanning Quadrupole Data-Independent Acquisition, Part A: Qualitative and Quantitative Characterization
    Moseley, M. Arthur
    Hughes, Christopher J.
    Juvvadi, Praveen R.
    Soderblom, Erik J.
    Lennon, Sarah
    Perkins, Simon R.
    Thompson, J. Will
    Steinbach, William J.
    Geromanos, Scott J.
    Wildgoose, Jason
    Langridge, James I.
    Richardson, Keith
    Vissers, Johannes P. C.
    JOURNAL OF PROTEOME RESEARCH, 2018, 17 (02) : 770 - 779
  • [28] A New Evaluation Metric for Quantitative Accuracy of LC-MS/MS-Based Proteomics with Data-Independent Acquisition
    Shi, Mengtian
    Huang, Chiyuan
    Chen, Renhui
    Chen, David Da Yong
    Yan, Binjun
    JOURNAL OF PROTEOME RESEARCH, 2024, 23 (09) : 3780 - 3790
  • [29] Processing strategies and software solutions for data-independent acquisition in mass spectrometry
    Bilbao, Aivett
    Varesio, Emmanuel
    Luban, Jeremy
    Strambio-De-Castillia, Caterina
    Hopfgartner, Gerard
    Mueller, Markus
    Lisacek, Frederique
    PROTEOMICS, 2015, 15 (5-6) : 964 - 980
  • [30] Optimizing data-independent acquisition (DIA) spectral library workflows for plasma proteomics studies
    Rice, Shawn J.
    Belani, Chandra P.
    PROTEOMICS, 2022, 22 (17)