Evaluating the Performance of the Astral Mass Analyzer for Quantitative Proteomics Using Data-Independent Acquisition

被引:71
|
作者
Heil, Lilian R. [1 ]
Damoc, Eugen [2 ]
Arrey, Tabiwang N. [2 ]
Pashkova, Anna [2 ]
Denisov, Eduard [2 ]
Petzoldt, Johannes [2 ]
Peterson, Amelia C. [2 ]
Hsu, Chris [1 ]
Searle, Brian C. [3 ,4 ]
Shulman, Nicholas [1 ]
Riffle, Michael [1 ]
Connolly, Brian [1 ]
Maclean, Brendan X. [1 ]
Remes, Philip M. [5 ]
Senko, Michael W. [5 ]
Stewart, Hamish I. [2 ]
Hock, Christian [2 ]
Makarov, Alexander A. [2 ]
Hermanson, Daniel [5 ]
Zabrouskov, Vlad [5 ]
Wu, Christine C. [1 ]
Maccoss, Michael J. [1 ]
机构
[1] Univ Washington, Dept Genome Sci, Seattle, WA 98195 USA
[2] Thermo Fisher Sci, D-28199 Bremen, Germany
[3] Ohio State Univ, Pelotonia Inst Immuno Oncol, Comprehens Canc Ctr, Columbus, OH 43210 USA
[4] Ohio State Univ, Dept Biomed Informat, Columbus, OH 43210 USA
[5] Thermo Fisher Sci, San Jose, CA 95134 USA
基金
美国国家卫生研究院;
关键词
high-resolution mass spectrometry; data-independentacquisition; plasma; quantitative proteomics; SPECTROMETRY;
D O I
10.1021/acs.jproteome.3c00357
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
We evaluate the quantitative performance of the newly released Asymmetric Track Lossless (Astral) analyzer. Using data-independent acquisition, the Thermo Scientific Orbitrap Astral mass spectrometer quantifies 5 times more peptides per unit time than state-of-the-art Thermo Scientific Orbitrap mass spectrometers, which have long been the gold standard for high-resolution quantitative proteomics. Our results demonstrate that the Orbitrap Astral mass spectrometer can produce high-quality quantitative measurements across a wide dynamic range. We also use a newly developed extracellular vesicle enrichment protocol to reach new depths of coverage in the plasma proteome, quantifying over 5000 plasma proteins in a 60 min gradient with the Orbitrap Astral mass spectrometer.
引用
收藏
页码:3290 / 3300
页数:11
相关论文
共 50 条
  • [1] Performance Evaluation of Data-Independent Acquisition-based Quantitative Proteomics on Three Types of Orbitrap Mass Spectrometers
    Zhou Yue
    Huang Min
    Li Xiang
    Guan Feng
    CHINESE JOURNAL OF ANALYTICAL CHEMISTRY, 2021, 49 (05) : 817 - 826
  • [2] Clinical applications of quantitative proteomics using targeted and untargeted data-independent acquisition techniques
    Meyer, Jesse G.
    Schilling, Birgit
    EXPERT REVIEW OF PROTEOMICS, 2017, 14 (05) : 419 - 429
  • [3] Quantitative Proteomics Based on Optimized Data-Independent Acquisition in Plasma Analysis
    Nigjeh, Eslam N.
    Chen, Ru
    Brand, Randall E.
    Petersen, Gloria M.
    Chari, Suresh T.
    von Haller, Priska D.
    Eng, Jimmy K.
    Feng, Ziding
    Yan, Qingxiang
    Brentnall, Teresa A.
    Pan, Sheng
    JOURNAL OF PROTEOME RESEARCH, 2017, 16 (02) : 665 - 676
  • [4] Deep learning approaches for data-independent acquisition proteomics
    Yang, Yi
    Lin, Ling
    Qiao, Liang
    EXPERT REVIEW OF PROTEOMICS, 2021, 18 (12) : 1031 - 1043
  • [5] Data-independent acquisition-based SWATH-MS for quantitative proteomics: a tutorial
    Ludwig, Christina
    Gillet, Ludovic
    Rosenberger, George
    Amon, Sabine
    Collins, Ben C.
    Aebersold, Ruedi
    MOLECULAR SYSTEMS BIOLOGY, 2018, 14 (08)
  • [6] Data-independent acquisition strategy for the serum proteomics of tuberculosis
    Zhong, Lijun
    Li, Yuan
    Tian, Huifang
    Guo, Lijuan
    Qin, Shibing
    Shen, Jing
    INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY, 2017, 10 (02): : 1172 - 1185
  • [7] Optimization of Ultrafast Proteomics Using an LC-Quadrupole-Orbitrap Mass Spectrometer with Data-Independent Acquisition
    Ishikawa, Masaki
    Konno, Ryo
    Nakajima, Daisuke
    Gotoh, Mari
    Fukasawa, Keiko
    Sato, Hironori
    Nakamura, Ren
    Ohara, Osamu
    Kawashima, Yusuke
    JOURNAL OF PROTEOME RESEARCH, 2022, 21 (09) : 2085 - 2093
  • [8] Enhanced differential expression statistics for data-independent acquisition proteomics
    Suomi, Tomi
    Elo, Laura L.
    SCIENTIFIC REPORTS, 2017, 7
  • [9] Increasing Proteome Depth While Maintaining Quantitative Precision in Short-Gradient Data-Independent Acquisition Proteomics
    Doellinger, Joerg
    Blumenscheit, Christian
    Schneider, Andy
    Lasch, Peter
    JOURNAL OF PROTEOME RESEARCH, 2023, 22 (06) : 2131 - 2140
  • [10] Data-Independent Acquisition Mass Spectrometry-Based Proteomics and Software Tools: A Glimpse in 2020
    Zhang, Fangfei
    Ge, Weigang
    Ruan, Guan
    Cai, Xue
    Guo, Tiannan
    PROTEOMICS, 2020, 20 (17-18)