Ratios conjecture for quadratic Hecke L-functions in the Gaussian field

被引:1
作者
Gao, Peng [1 ]
Zhao, Liangyi [2 ]
机构
[1] Beihang Univ, Sch Math Sci, Beijing 100191, Peoples R China
[2] Univ New South Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
来源
MONATSHEFTE FUR MATHEMATIK | 2024年 / 203卷 / 01期
关键词
Ratios conjecture; Mean values; Quadratic Hecke L-functions; ZETA-FUNCTIONS; SERIES; MOMENT;
D O I
10.1007/s00605-023-01903-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We develop the L-functions ratios conjecture with one shift in the numerator and denominator in certain ranges for the family of quadratic Hecke L-functions in the Gaussian field using multiple Dirichlet series under the generalized Riemann hypothesis. We also obtain an asymptotical formula for the first moment of central values of the same family of L-functions, obtaining an error term of size O(X1/2+epsilon).
引用
收藏
页码:63 / 90
页数:28
相关论文
共 22 条
[1]  
Berndt B.C., 1998, Gauss and Jacobi Sums, Canadian Mathematical Society Series of Monographs and Advanced Texts
[2]   L-Functions with n-th-Order Twists [J].
Blomer, Valentin ;
Goldmakher, Leo ;
Louvel, Benoit .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2014, 2014 (07) :1925-1955
[3]   A theorem on analytic continuation of functions in several variables [J].
Bochner, S .
ANNALS OF MATHEMATICS, 1938, 39 :14-19
[4]  
Bui H.M., ARXIV
[5]  
Cech M., ARXIV
[6]  
Conrey B, 2008, COMMUN NUMBER THEORY, V2, P593
[7]   Applications of the L-functions ratios conjectures [J].
Conrey, J. B. ;
Snaith, N. C. .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2007, 94 :594-646
[8]   Multiple Dirichlet series and moments of zeta and L-functions [J].
Diaconu, A ;
Goldfeld, D ;
Hoffstein, J .
COMPOSITIO MATHEMATICA, 2003, 139 (03) :297-360
[9]   On the third moment of L(1/2, χd) II: the number field case [J].
Diaconu, Adrian ;
Whitehead, Ian .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2021, 23 (06) :2051-2070
[10]   On the third moment of L(1/2, χd) I: The rational function field case [J].
Diaconu, Adrian .
JOURNAL OF NUMBER THEORY, 2019, 198 :1-42