Constructing Abundant Oxygen-Containing Functional Groups in Hard Carbon Derived from Anthracite for High-Performance Sodium-Ion Batteries

被引:14
|
作者
Xu, Yaya [1 ,2 ]
Guo, Donglei [2 ]
Luo, Yuan [1 ]
Xu, Jiaqi [2 ]
Guo, Kailong [1 ,2 ]
Wang, Wei [3 ]
Liu, Guilong [2 ]
Wu, Naiteng [2 ]
Liu, Xianming [2 ]
Qin, Aimiao [1 ,4 ]
机构
[1] Guilin Univ Technol, Key Lab New Proc Technol Nonferrous Met & Mat, Minist Educ, Guilin 541004, Peoples R China
[2] Luoyang Normal Univ, Coll Chem & Chem Engn, Key Lab Funct Oriented Porous Mat, Luoyang 471934, Peoples R China
[3] Ningbo Univ, Coll Sci & Technol, Ningbo Key Lab Agr Germplasm Resources Min & Envir, Cixi 315300, Peoples R China
[4] Guilin Univ Technol, Guangxi Key Lab Opt & Elect Mat & Devices, Guilin 541004, Peoples R China
基金
中国国家自然科学基金;
关键词
sodium-ion batteries; hard carbon; anthracite; pre-oxidation; INITIAL COULOMBIC EFFICIENCY; POROUS CARBON; STORAGE MECHANISM; ANODE MATERIALS; ENERGY-STORAGE; HIGH-CAPACITY; SOFT-CARBON; LITHIUM; INSIGHTS; NANOPARTICLES;
D O I
10.3390/nano13233002
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Hard carbon is regarded as one of the greatest potential anode materials for sodium-ion batteries (SIBs) because of its affordable price and large layer spacing. However, its poor initial coulombic efficiency (ICE) and low specific capacity severely restrict its practical commercialization in SIBs. In this work, we successfully constructed abundant oxygen-containing functional groups in hard carbon by using pre-oxidation anthracite as the precursor combined with controlling the carbonization temperature. The oxygen-containing functional groups in hard carbon can increase the reversible Na+ adsorption in the slope region, and the closed micropores can be conducive to Na+ storage in the low-voltage platform region. As a result, the optimal sample exhibits a high initial reversible sodium storage capacity of 304 mAh g-1 at 0.03 A g-1, with an ICE of 67.29% and high capacitance retention of 95.17% after 100 cycles. This synergistic strategy can provide ideas for the design of high-performance SIB anode materials with the intent to regulate the oxygen content in the precursor.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Constructing ZnS@hard carbon nanosheets for high-performance and long-cycle sodium-ion batteries
    Zhang, Huan
    Yuan, Fengzhou
    Xue, Suxing
    Yu, Dongfang
    Jin, Yachao
    Song, Li
    Zhang, Mingdao
    Zheng, Hegen
    CHEMICAL ENGINEERING JOURNAL, 2025, 509
  • [22] Ultrasmall Sn Nanoparticles Embedded in Carbon as High-Performance Anode for Sodium-Ion Batteries
    Liu, Yongchang
    Zhang, Ning
    Jiao, Lifang
    Tao, Zhanliang
    Chen, Jun
    ADVANCED FUNCTIONAL MATERIALS, 2015, 25 (02) : 214 - 220
  • [23] A Recyclable Polyimide Derived Hard Carbon as a High-Performance Negative Electrode Material for Sodium-Ion Batteries
    Fang, Qian
    Wang, Xiaojie
    Chen, Peiting
    Ruan, Dianbo
    Qiao, Zhijun
    CHEMISTRYSELECT, 2024, 9 (35):
  • [24] Exogenous phosphorus supplementation and sodium reduction treatment to realize N, P co-doped hard carbon with reduced oxygen-containing groups for high-performance sodium-ion batteries
    Wang, Yujue
    Wang, Yilin
    Zhang, Lei
    Tang, Xianghao
    Ai, Jie
    Xiao, Dan
    Zhao, Qian
    JOURNAL OF POWER SOURCES, 2025, 630
  • [25] Hybrid catalyst-assisted synthesis of multifunctional carbon derived from Camellia shell for high-performance sodium-ion batteries and sodium-ion hybrid capacitors
    Mao, Hanshu
    Yang, Sisi
    Yang, Yingjun
    Yang, Jinyue
    Yuan, Guizhi
    Zheng, Mingtao
    Hu, Hang
    Liang, Yeru
    Yu, Xiaoyuan
    CARBON NEUTRALIZATION, 2024, 3 (04): : 673 - 688
  • [26] Constructing Accessible Closed Nanopores in Coal-Derived Hard Carbon for Sodium-Ion Batteries
    Fu, Weixuan
    Zhao, Guoqiang
    He, Shuaijie
    Yan, Chenyu
    Li, Song
    Tang, Aidong
    Yang, Huaming
    SMALL, 2025, 21 (10)
  • [27] Hard Carbon Nanosheets with Uniform Ultramicropores and Accessible Functional Groups Showing High Realistic Capacity and Superior Rate Performance for Sodium-Ion Storage
    Xia, Ji-Li
    Yan, Dong
    Guo, Li-Ping
    Dong, Xiao-Ling
    Li, Wen-Cui
    Lu, An-Hui
    ADVANCED MATERIALS, 2020, 32 (21)
  • [28] Sulphur-doped carbon nanosheets derived from biomass as high-performance anode materials for sodium-ion batteries
    Zhao, Gongyuan
    Yu, Dengfeng
    Zhang, Hong
    Sun, Feifei
    Li, Jiwei
    Zhu, Lin
    Sun, Lei
    Yu, Miao
    Besenbacher, Flemming
    Sun, Ye
    NANO ENERGY, 2020, 67
  • [29] Hydrothermally assisted transformation of corn stalk wastes into high-performance hard carbon anode for sodium-ion batteries
    Cong, Lin
    Tian, Guorong
    Luo, Dongxue
    Ren, Xuefei
    Xiang, Xingde
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2020, 871
  • [30] Pinecone biomass-derived hard carbon anodes for high-performance sodium-ion batteries
    Zhang, Tao
    Mao, Jing
    Liu, Xiaolin
    Xuan, Minjie
    Bi, Kai
    Zhang, Xiao Li
    Hu, Junhua
    Fan, Jiajie
    Chen, Shimou
    Shao, Guosheng
    RSC ADVANCES, 2017, 7 (66): : 41504 - 41511