Bayesian model averaging for probabilistic S-N curves with probability distribution model form uncertainty

被引:5
|
作者
Zou, Qingrong [1 ]
Wen, Jici [2 ,3 ]
机构
[1] Beijing Informat Sci & Technol Univ, Sch Appl Sci, Beijing 100192, Peoples R China
[2] Chinese Acad Sci, Inst Mech, State Key Lab Nonlinear Mech, Beijing 100190, Peoples R China
[3] Univ Chinese Acad Sci, Sch Engn Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
N curves; Fatigue design; Bayesian model averaging; Probability distribution model form; uncertainty; FATIGUE LIFE; PREDICTION; INFERENCE;
D O I
10.1016/j.ijfatigue.2023.107955
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Reliability analysis of engineering components or structures heavily relies on accurately estimating the fatigue properties of materials. However, significant uncertainty exists regarding the distribution form and value in fatigue data, posing significant challenges in constructing a robust probability fatigue model. To address this challenge, we propose a Bayesian model averaging (BMA) method to incorporate model form uncertainty into the estimation of the probability density of fatigue life. The performance of BMA was verified through numerical experiments using both simulated and experimental data. The results highlight the robustness and reliability of BMA compared to individual models, as it effectively incorporates model form uncertainty. The proposed BMA model offers a general framework for developing probabilistic fatigue models with high robustness and accuracy in their predictions. This model contributes to advancing the field of reliability analysis by addressing the challenges posed by uncertainty and enhancing the understanding of fatigue properties for engineering components and structures.
引用
收藏
页数:11
相关论文
共 50 条