A robust and efficient hybrid solver for crystal plasticity

被引:9
作者
Hardie, Chris [1 ]
Long, Daniel J. [2 ]
Demir, Eralp [3 ]
Tarleton, Edmund [3 ]
Dunne, Fionn P. E. [2 ]
机构
[1] UK Atom Energy Author, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England
[2] Imperial Coll London, Dept Mat, London SW7 2BY, England
[3] Univ Oxford, Dept Engn Sci, Parks Rd, Oxford OX1 3PJ, England
关键词
B. Crystal plasticity; C. Finite element; B. Rate-dependent material; C. Numerical algorithms; B. Elastic-viscoplastic material; NUMERICAL IMPLEMENTATION; FATIGUE;
D O I
10.1016/j.ijplas.2023.103773
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Conventional crystal plasticity (CP) solvers are based on a Newton-Raphson (NR) approach which use an initial guess for the free variables (often stress) to be solved. These solvers are limited by a finite interval of convergence and often fail when the free variable falls outside this interval. Solution failure results in the reduction of the time increment to be solved, thus convergence of the CP solver is a bottleneck which determines the computational cost of the simulation. The numerical stability of the slip law in its inverted form offers a solver that isn't vulnerable to poor pre-conditioning (initial guess) and can be used to progress to a solution from a stable starting point (i.e., from zero slip rate gamma kp = 0 s-1). In this paper, a novel formulation that enables the application of the slip law in its inverted form is introduced; this treats all slip systems as independent by approximating the Jacobian as a diagonal matrix, thus overcomes ill-defined and singular Jacobians associated with previous approaches. This scheme was demonstrated to offer superior robustness and convergence rate for a case with a single slip system, however the convergence rate for extreme cases with several active slip systems was relatively poor. Here, we introduce a novel 'hybrid scheme' that first uses the reverse scheme for the first stage of the solution, and then transitions to the forward scheme to complete the solution at a higher convergence rate. Several examples are given for pointwise calculations, followed by CPFEM simulations for FCC copper and HCP Zircaloy-4, which demonstrated solver performance in practise. The performance of simulations using the hybrid scheme was shown to require six to nine times fewer increments compared to the conventional forward scheme solver based on a free variable of stress and initial guess based on a fully elastic increment.
引用
收藏
页数:28
相关论文
共 35 条
[1]   Numerical integration of rate-independent BCC single crystal plasticity models: comparative study of two classes of numerical algorithms [J].
Akpama, Holanyo K. ;
Ben Bettaieb, Mohamed ;
Abed-Meraim, Farid .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2016, 108 (05) :363-422
[2]  
Belytschko T, 1999, INT J NUMER METH ENG, V45, P601, DOI 10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO
[3]  
2-S
[4]   On the selection of active slip systems in crystal plasticity [J].
Busso, EP ;
Cailletaud, G .
INTERNATIONAL JOURNAL OF PLASTICITY, 2005, 21 (11) :2212-2231
[5]   Spherical indentation of copper: Crystal plasticity vs experiment [J].
Cackett, Alexandra J. ;
Hardie, Chris D. ;
Lim, Joven J. H. ;
Tarleton, Edmund .
MATERIALIA, 2019, 7
[6]   COMPUTATIONAL MODELING OF SINGLE-CRYSTALS [J].
CUITINO, AM ;
ORTIZ, M .
MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 1993, 1 (03) :225-263
[7]   A modular spectral solver for crystal plasticity [J].
Dadhich, Ritesh ;
Alankar, Alankar .
INTERNATIONAL JOURNAL OF PLASTICITY, 2022, 156
[8]   On the computational treatment of fully coupled crystal plasticity slip and martensitic transformation constitutive models at finite strains [J].
de Carvalho, Miguel Vieira ;
Cardoso Coelho, Rui Pedro ;
Andrade Pires, Francisco M. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2022, 123 (21) :5155-5200
[9]  
De Cooman BC, 2017, WOODH PUBL SER METAL, P317, DOI 10.1016/B978-0-08-100638-2.00011-0
[10]   Investigation of integration algorithms for rate-dependent crystal plasticity using explicit finite element codes [J].
Dumoulin, S. ;
Hopperstad, O. S. ;
Berstad, T. .
COMPUTATIONAL MATERIALS SCIENCE, 2009, 46 (04) :785-799