Denoising brain networks using a fixed mathematical phase change in independent component analysis of magnitude-only fMRI data

被引:0
作者
Zhang, Chao-Ying [1 ]
Lin, Qiu-Hua [1 ,6 ]
Niu, Yan-Wei [1 ]
Li, Wei-Xing [1 ]
Gong, Xiao-Feng [1 ]
Cong, Fengyu [2 ,3 ]
Wang, Yu-Ping [4 ]
Calhoun, Vince D. [5 ]
机构
[1] Dalian Univ Technol, Fac Elect Informat & Elect Engn, Sch Informat & Commun Engn, Dalian, Peoples R China
[2] Dalian Univ Technol, Fac Elect Informat & Elect Engn, Sch Biomed Engn, Dalian, Peoples R China
[3] Univ Jyvaskyla, Fac Informat Technol, Jyvaskyla, Finland
[4] Tulane Univ, Dept Biomed Engn, New Orleans, LA USA
[5] Emory Univ, Georgia State Univ, Georgia Inst Technol, Triinst Ctr Translat Res Neuroimaging & Data Sci T, Atlanta, GA USA
[6] Dalian Univ Technol, Fac Elect Informat & Elect Engn, Sch Informat & Commun Engn, Dalian 116024, Peoples R China
基金
中国国家自然科学基金; 美国国家科学基金会; 美国国家卫生研究院;
关键词
fMRI; independent component analysis; denoising; mathematical spatial source phase; mapping framework; fixed phase change; GENERAL LINEAR-MODEL; FUNCTIONAL MRI DATA; BLIND SEPARATION; IMAGING DATA; COMPLEX; ACTIVATION; SUBJECT; ICA; DECOMPOSITION; INFORMATION;
D O I
10.1002/hbm.26471
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Brain networks extracted by independent component analysis (ICA) from magnitude-only fMRI data are usually denoised using various amplitude-based thresholds. By contrast, spatial source phase (SSP) or the phase information of ICA brain networks extracted from complex-valued fMRI data, has provided a simple yet effective way to perform the denoising using a fixed phase change. In this work, we extend the approach to magnitude-only fMRI data to avoid testing various amplitude thresholds for denoising magnitude maps extracted by ICA, as most studies do not save the complex-valued data. The main idea is to generate a mathematical SSP map for a magnitude map using a mapping framework, and the mapping framework is built using complex-valued fMRI data with a known SSP map. Here we leverage the fact that the phase map derived from phase fMRI data has similar phase information to the SSP map. After verifying the use of the magnitude data of complex-valued fMRI, this framework is generalized to work with magnitude-only data, allowing use of our approach even without the availability of the corresponding phase fMRI datasets. We test the proposed method using both simulated and experimental fMRI data including complex-valued data from University of New Mexico and magnitude-only data from Human Connectome Project. The results provide evidence that the mathematical SSP denoising with a fixed phase change is effective for denoising spatial maps from magnitude-only fMRI data in terms of retaining more BOLD-related activity and fewer unwanted voxels, compared with amplitude-based thresholding. The proposed method provides a unified and efficient SSP approach to denoise ICA brain networks in fMRI data.
引用
收藏
页码:5712 / 5728
页数:17
相关论文
共 70 条
  • [1] The Effect of Model Order Selection in Group PICA
    Abou-Elseoud, Ahmed
    Starck, Tuomo
    Remes, Jukka
    Nikkinen, Juha
    Tervonen, Osmo
    Kiviniemi, Vesa
    [J]. HUMAN BRAIN MAPPING, 2010, 31 (08) : 1207 - 1216
  • [2] Unraveling Diagnostic Biomarkers of Schizophrenia Through Structure-Revealing Fusion of Multi-Modal Neuroimaging Data
    Acar, Evrim
    Schenker, Carla
    Levin-Schwartz, Yuri
    Calhoun, Vince D.
    Adali, Tulay
    [J]. FRONTIERS IN NEUROSCIENCE, 2019, 13
  • [3] COMPLEX-VALUED TIME SERIES MODELING FOR IMPROVED ACTIVATION DETECTION IN FMRI STUDIES
    Adrian, Daniel W.
    Maitra, Ranjan
    Rowe, Daniel B.
    [J]. ANNALS OF APPLIED STATISTICS, 2018, 12 (03) : 1451 - 1478
  • [4] Evaluation of spatio-temporal decomposition techniques for group analysis of fMRI resting state data sets
    Afshin-Pour, Babak
    Grady, Cheryl
    Strother, Stephen
    [J]. NEUROIMAGE, 2014, 87 : 363 - 382
  • [5] A baseline for the multivariate comparison of resting-state networks
    Allen, Elena A.
    Erhardt, Erik B.
    Damaraju, Eswar
    Gruner, William
    Segall, Judith M.
    Silva, Rogers F.
    Havlicek, Martin
    Rachakonda, Srinivas
    Fries, Jill
    Kalyanam, Ravi
    Michael, Andrew M.
    Caprihan, Arvind
    Turner, Jessica A.
    Eichele, Tom
    Adelsheim, Steven
    Bryan, Angela D.
    Bustillo, Juan
    Clark, Vincent P.
    Ewing, Sarah W. Feldstein
    Filbey, Francesca
    Ford, Corey C.
    Hutchison, Kent
    Jung, Rex E.
    Kiehl, Kent A.
    Kodituwakku, Piyadasa
    Komesu, Yuko M.
    Mayer, Andrew R.
    Pearlson, Godfrey D.
    Phillips, John P.
    Sadek, Joseph R.
    Stevens, Michael
    Teuscher, Ursina
    Thoma, Robert J.
    Calhoun, Vince D.
    [J]. FRONTIERS IN SYSTEMS NEUROSCIENCE, 2011, 5
  • [6] Changes in fMRI magnitude data and phase data observed in block-design and event-related tasks
    Arja, Sunil Kumar
    Feng, Zhaomei
    Chen, Zikuan
    Caprihan, Arvind
    Kiehl, Kent A.
    Adali, Tulay
    Calhoun, Vince D.
    [J]. NEUROIMAGE, 2010, 49 (04) : 3149 - 3160
  • [7] Tensorial extensions of independent component analysis for multisubject FMRI analysis
    Beckmann, CF
    Smith, SM
    [J]. NEUROIMAGE, 2005, 25 (01) : 294 - 311
  • [8] AN INFORMATION MAXIMIZATION APPROACH TO BLIND SEPARATION AND BLIND DECONVOLUTION
    BELL, AJ
    SEJNOWSKI, TJ
    [J]. NEURAL COMPUTATION, 1995, 7 (06) : 1129 - 1159
  • [9] BOLD correlates of EEG topography reveal rapid resting-state network dynamics
    Britz, Juliane
    Van De Ville, Dimitri
    Michel, Christoph M.
    [J]. NEUROIMAGE, 2010, 52 (04) : 1162 - 1170
  • [10] Investigating the electrophysiological basis of resting state networks using magnetoencephalography
    Brookes, Matthew J.
    Woolrich, Mark
    Luckhoo, Henry
    Price, Darren
    Hale, Joanne R.
    Stephenson, Mary C.
    Barnes, Gareth R.
    Smith, Stephen M.
    Morris, Peter G.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (40) : 16783 - 16788