Optimal control problem stated in a locally periodic rough domain: a homogenization study

被引:0
作者
Aiyappan, S. [1 ]
Cardone, Giuseppe [2 ]
Perugia, Carmen [3 ]
机构
[1] Indian Inst Technol Hyderabad, Dept Math, Hyderabad, India
[2] Univ Napoli Federico II, Dipartimento Matemat & Applicazioni R Caccioppoli, Naples, Italy
[3] Univ Sannio, Dipartimento Sci & Tecnol, Benevento, Italy
关键词
Homogenization; asymptotic analysis; periodic unfolding; locally periodic boundary; optimal control; UNFOLDING OPERATOR; BOUNDARY; JUNCTION;
D O I
10.1080/00036811.2023.2265967
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the asymptotic behaviour of a linear optimal control problem posed on a locally periodic rapidly oscillating domain. We consider an L2-cost functional constrained by a Poisson problem having a mixed boundary condition: we assume a homogeneous Neumann condition on the oscillating part of the boundary and a homogeneous Dirichlet condition on the remaining part.
引用
收藏
页码:1757 / 1768
页数:12
相关论文
共 25 条
[1]   Effective boundary conditions for laminar flows over periodic rough boundaries [J].
Achdou, Y ;
Pironneau, O ;
Valentin, F .
JOURNAL OF COMPUTATIONAL PHYSICS, 1998, 147 (01) :187-218
[2]   Homogenization of a Locally Periodic Oscillating Boundary [J].
Aiyappan, S. ;
Pettersson, K. .
APPLIED MATHEMATICS AND OPTIMIZATION, 2022, 86 (02)
[3]   HOMOGENIZATION OF A NON-PERIODIC OSCILLATING BOUNDARY VIA PERIODIC UNFOLDING [J].
Aiyappan, S. ;
Pettersson, K. ;
Sufian, A. .
DIFFERENTIAL EQUATIONS & APPLICATIONS, 2022, 14 (01) :31-47
[4]   Semi-linear optimal control problem on a smooth oscillating domain [J].
Aiyappan, S. ;
Nandakumaran, A. K. ;
Prakash, Ravi .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2020, 22 (04)
[5]   Locally periodic unfolding operator for highly oscillating rough domains [J].
Aiyappan, S. ;
Nandakumaran, A. K. ;
Prakash, Ravi .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2019, 198 (06) :1931-1954
[6]   Generalization of unfolding operator for highly oscillating smooth boundary domains and homogenization [J].
Aiyappan, S. ;
Nandakumaran, A. K. ;
Prakash, Ravi .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2018, 57 (03)
[7]   Optimal control problem in a domain with branched structure and homogenization [J].
Aiyappan, S. ;
Nandakumaran, A. K. .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (08) :3173-3189
[8]   Homogenization of a nonlinear monotone problem in a locally periodic domain via unfolding method [J].
Aiyappan, Srinivasan ;
Cardone, Giuseppe ;
Perugia, Carmen ;
Prakash, Ravi .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2022, 66
[9]   Boundary homogenization in domains with randomly oscillating boundary [J].
Amirat, Youcef ;
Bodart, Olivier ;
Chechkin, Gregory A. ;
Piatnitski, Andrey L. .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2011, 121 (01) :1-23
[10]   UNFOLDING OPERATOR METHOD FOR THIN DOMAINS WITH A LOCALITY HIGHLY OSCILLATORY BOUNDARY [J].
Arrieta, Jose M. ;
Villanueva-Pesqueira, Manuel .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2016, 48 (03) :1634-1671