Modified Inertial Projection Method for Solving Pseudomonotone Variational Inequalities with Non-Lipschitz in Hilbert Spaces

被引:0
作者
Thong, Duong Viet [1 ]
机构
[1] Natl Econ Univ, Fac Math Econ, Hanoi, Vietnam
关键词
Inertial method; projection and contraction method; variational inequality problem; pseudomonotone mapping; convergence rate; SUBGRADIENT EXTRAGRADIENT METHOD; CONTRACTION METHODS; WEAK-CONVERGENCE;
D O I
10.1007/s10114-023-2080-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with a class of inertial gradient projection methods for solving a variational inequality problem involving pseudomonotone and non-Lipschitz mappings in Hilbert spaces. The proposed algorithm incorporates inertial techniques and the projection and contraction method. The weak convergence is proved without the condition of the Lipschitz continuity of the mappings. Meanwhile, the linear convergence of the algorithm is established under strong pseudomonotonicity and Lipschitz continuity assumptions. The main results obtained in this paper extend and improve some related works in the literature.
引用
收藏
页码:2374 / 2392
页数:19
相关论文
共 50 条
  • [21] Inertial projection-type methods for solving pseudomonotone variational inequality problems in Hilbert space
    Reich, Simeon
    Thong, Duong Viet
    Cholamjiak, Prasit
    Van Long, Luong
    [J]. NUMERICAL ALGORITHMS, 2021, 88 (02) : 813 - 835
  • [22] Improved inertial projection and contraction method for solving pseudomonotone variational inequality problems
    Ming Tian
    Gang Xu
    [J]. Journal of Inequalities and Applications, 2021
  • [23] Improved inertial projection and contraction method for solving pseudomonotone variational inequality problems
    Tian, Ming
    Xu, Gang
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2021, 2021 (01)
  • [24] Two projection-based methods for bilevel pseudomonotone variational inequalities involving non-Lipschitz operators
    Bing Tan
    Sun Young Cho
    [J]. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2022, 116
  • [25] Relaxed extragradient algorithm for solving pseudomonotone variational inequalities in Hilbert spaces
    Hieu, Dang Van
    Cho, Yeol Je
    Xiao, Yi-bin
    Kumam, Poom
    [J]. OPTIMIZATION, 2020, 69 (10) : 2279 - 2304
  • [26] Inertial projection-type methods for solving pseudomonotone variational inequality problems in Hilbert space
    Simeon Reich
    Duong Viet Thong
    Prasit Cholamjiak
    Luong Van Long
    [J]. Numerical Algorithms, 2021, 88 : 813 - 835
  • [27] A Novel Inertial Projection and Contraction Method for Solving Pseudomonotone Variational Inequality Problems
    Cholamjiak, Prasit
    Duong Viet Thong
    Cho, Yeol Je
    [J]. ACTA APPLICANDAE MATHEMATICAE, 2020, 169 (01) : 217 - 245
  • [28] Modified Extragradient Method for Pseudomonotone Variational Inequalities in Infinite Dimensional Hilbert Spaces
    Van Hieu, Dang
    Cho, Yeol Je
    Xiao, Yi-Bin
    Kumam, Poom
    [J]. VIETNAM JOURNAL OF MATHEMATICS, 2021, 49 (04) : 1165 - 1183
  • [29] A new self-adaptive algorithm for solving pseudomonotone variational inequality problems in Hilbert spaces
    Duong Viet, Thong
    Van Long, Luong
    Li, Xiao-Huan
    Dong, Qiao-Li
    Cho, Yeol Je
    Tuan, Pham Anh
    [J]. OPTIMIZATION, 2022, 71 (12) : 3669 - 3693
  • [30] Convergence of the Modified Extragradient Method for Variational Inequalities with Non-Lipschitz Operators
    Denisov S.V.
    Semenov V.V.
    Chabak L.M.
    [J]. Cybernetics and Systems Analysis, 2015, 51 (05) : 757 - 765