Study on thermal-hydraulic performance of printed circuit heat exchangers with supercritical methane based on machine learning methods
被引:32
|
作者:
Li, Qian
论文数: 0引用数: 0
h-index: 0
机构:
Northeast Elect Power Univ, Sch Energy & Power Engn, Lab Thermo Fluid Sci & Nucl Engn, Jilin 132012, Peoples R ChinaNortheast Elect Power Univ, Sch Energy & Power Engn, Lab Thermo Fluid Sci & Nucl Engn, Jilin 132012, Peoples R China
Li, Qian
[1
]
Zhan, Qi
论文数: 0引用数: 0
h-index: 0
机构:
Northeast Elect Power Univ, Sch Energy & Power Engn, Lab Thermo Fluid Sci & Nucl Engn, Jilin 132012, Peoples R ChinaNortheast Elect Power Univ, Sch Energy & Power Engn, Lab Thermo Fluid Sci & Nucl Engn, Jilin 132012, Peoples R China
Zhan, Qi
[1
]
Yu, Shipeng
论文数: 0引用数: 0
h-index: 0
机构:
Northeast Elect Power Univ, Sch Energy & Power Engn, Lab Thermo Fluid Sci & Nucl Engn, Jilin 132012, Peoples R ChinaNortheast Elect Power Univ, Sch Energy & Power Engn, Lab Thermo Fluid Sci & Nucl Engn, Jilin 132012, Peoples R China
Yu, Shipeng
[1
]
Sun, Jianchuang
论文数: 0引用数: 0
h-index: 0
机构:
Northeast Elect Power Univ, Sch Energy & Power Engn, Lab Thermo Fluid Sci & Nucl Engn, Jilin 132012, Peoples R ChinaNortheast Elect Power Univ, Sch Energy & Power Engn, Lab Thermo Fluid Sci & Nucl Engn, Jilin 132012, Peoples R China
Sun, Jianchuang
[1
]
Cai, Weihua
论文数: 0引用数: 0
h-index: 0
机构:
Northeast Elect Power Univ, Sch Energy & Power Engn, Lab Thermo Fluid Sci & Nucl Engn, Jilin 132012, Peoples R ChinaNortheast Elect Power Univ, Sch Energy & Power Engn, Lab Thermo Fluid Sci & Nucl Engn, Jilin 132012, Peoples R China
Cai, Weihua
[1
]
机构:
[1] Northeast Elect Power Univ, Sch Energy & Power Engn, Lab Thermo Fluid Sci & Nucl Engn, Jilin 132012, Peoples R China
In this study, a machine learning approach was used to predict thermal-hydraulic performance of supercritical methane flow in a printed circuit heat exchanger (PCHE). Local multiple physical parameters within the PCHE semicircular straight channel obtained from numerical simulations were employed and data of 6213 micro segments were obtained. Four machine learning models were used to predict local heat transfer coefficient and unit pressure drop at different operating conditions. By comparing the predicted results obtained after hyper-parameter optimization, it shows that artificial neural network (ANN) can predict the parameters with higher accuracy. The ANN model can achieve a coefficient of determination (R2) of 0.9994 with mean absolute percentage error (MAPE) of 0.252% for the heat transfer coefficient, and R2 of 0.9996 with MAPE of 1.749% for the unit pressure drop. To verify the accuracy of machine learning model, a one-dimensional simulation model embedded with ANN model was built to calculate the temperature and pressure distribution in the entire PCHE channel. The results show the temperature and pressure distribution agree well with numerical results. This work provides an accurate machine learning approach to predict flow and heat transfer parameters, which is of great value for the simulation and design of the PCHE.
机构:
Fed Univ Rio De Janeiro COPPE UFRJ, Dept Mech Engn, Rio De Janeiro, BrazilFed Univ Rio De Janeiro COPPE UFRJ, Dept Mech Engn, Rio De Janeiro, Brazil
Naveira-Cotta, Carolina P.
Su, Jian
论文数: 0引用数: 0
h-index: 0
机构:
Fed Univ Rio De Janeiro COPPE UFRJ, Dept Nucl Engn, Rio De Janeiro, BrazilFed Univ Rio De Janeiro COPPE UFRJ, Dept Mech Engn, Rio De Janeiro, Brazil
Su, Jian
Lucena Kreppel Paes, Paulo
论文数: 0引用数: 0
h-index: 0
机构:
SIMEC Mech Simulat, Rio De Janeiro, BrazilFed Univ Rio De Janeiro COPPE UFRJ, Dept Mech Engn, Rio De Janeiro, Brazil
Lucena Kreppel Paes, Paulo
Egmont, Philippe R.
论文数: 0引用数: 0
h-index: 0
机构:
SIMEC Mech Simulat, Rio De Janeiro, BrazilFed Univ Rio De Janeiro COPPE UFRJ, Dept Mech Engn, Rio De Janeiro, Brazil
Egmont, Philippe R.
论文数: 引用数:
h-index:
机构:
Moreira, Rodrigo P. M.
da Silva, Gabriel Caetano G. R.
论文数: 0引用数: 0
h-index: 0
机构:
Fed Univ Rio De Janeiro COPPE UFRJ, Dept Nucl Engn, Rio De Janeiro, BrazilFed Univ Rio De Janeiro COPPE UFRJ, Dept Mech Engn, Rio De Janeiro, Brazil
da Silva, Gabriel Caetano G. R.
Monteiro, Andre Sampaio
论文数: 0引用数: 0
h-index: 0
机构:
Petrobras SA, Rio De Janeiro, BrazilFed Univ Rio De Janeiro COPPE UFRJ, Dept Mech Engn, Rio De Janeiro, Brazil
机构:
Chinese Acad Sci, Inst Engn Thermophys, Beijing 100190, Peoples R China
Univ Chinese Acad Sci, Sch Engn Sci, Beijing 100049, Peoples R ChinaChinese Acad Sci, Inst Engn Thermophys, Beijing 100190, Peoples R China
Han, Zengxiao
Cui, Xinying
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Engn Thermophys, Beijing 100190, Peoples R China
Univ Chinese Acad Sci, Sch Engn Sci, Beijing 100049, Peoples R ChinaChinese Acad Sci, Inst Engn Thermophys, Beijing 100190, Peoples R China
Cui, Xinying
Guo, Jiangfeng
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Engn Thermophys, Beijing 100190, Peoples R China
Univ Chinese Acad Sci, Sch Engn Sci, Beijing 100049, Peoples R China
Imperial Coll London, Dept Chem Engn, London SW7 2AZ, England
Nanjing Inst Future Energy Syst, Nanjing 211135, Peoples R ChinaChinese Acad Sci, Inst Engn Thermophys, Beijing 100190, Peoples R China
Guo, Jiangfeng
Zhang, Haiyan
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Engn Thermophys, Beijing 100190, Peoples R China
Univ Chinese Acad Sci, Sch Engn Sci, Beijing 100049, Peoples R ChinaChinese Acad Sci, Inst Engn Thermophys, Beijing 100190, Peoples R China
Zhang, Haiyan
Zhou, Jingzhi
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Engn Thermophys, Beijing 100190, Peoples R China
Univ Chinese Acad Sci, Sch Engn Sci, Beijing 100049, Peoples R ChinaChinese Acad Sci, Inst Engn Thermophys, Beijing 100190, Peoples R China
Zhou, Jingzhi
Cheng, Keyong
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Engn Thermophys, Beijing 100190, Peoples R China
Univ Chinese Acad Sci, Sch Engn Sci, Beijing 100049, Peoples R China
Nanjing Inst Future Energy Syst, Nanjing 211135, Peoples R ChinaChinese Acad Sci, Inst Engn Thermophys, Beijing 100190, Peoples R China
Cheng, Keyong
Zhang, Huzhong
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Engn Thermophys, Beijing 100190, Peoples R China
Univ Chinese Acad Sci, Sch Engn Sci, Beijing 100049, Peoples R ChinaChinese Acad Sci, Inst Engn Thermophys, Beijing 100190, Peoples R China
Zhang, Huzhong
Huai, Xiulan
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Engn Thermophys, Beijing 100190, Peoples R China
Univ Chinese Acad Sci, Sch Engn Sci, Beijing 100049, Peoples R China
Nanjing Inst Future Energy Syst, Nanjing 211135, Peoples R ChinaChinese Acad Sci, Inst Engn Thermophys, Beijing 100190, Peoples R China
机构:
Korea Atom Energy Res Inst, Daejeon 34057, South Korea
POSTECH, Div Adv Nucl Engn, Pohang 790784, South KoreaKorea Atom Energy Res Inst, Daejeon 34057, South Korea
Park, Joo Hyun
Kim, Moo Hwan
论文数: 0引用数: 0
h-index: 0
机构:
POSTECH, Div Adv Nucl Engn, Pohang 790784, South Korea
POSTECH, Dept Mech Engn, Pohang 790784, South KoreaKorea Atom Energy Res Inst, Daejeon 34057, South Korea
机构:
Xi An Jiao Tong Univ, Sch Chem Engn & Technol, Xian 710049, Shanxi, Peoples R ChinaXi An Jiao Tong Univ, Sch Chem Engn & Technol, Xian 710049, Shanxi, Peoples R China
Jian, Guanping
Wang, Simin
论文数: 0引用数: 0
h-index: 0
机构:
Xi An Jiao Tong Univ, Sch Chem Engn & Technol, Xian 710049, Shanxi, Peoples R ChinaXi An Jiao Tong Univ, Sch Chem Engn & Technol, Xian 710049, Shanxi, Peoples R China
Wang, Simin
Wen, Jian
论文数: 0引用数: 0
h-index: 0
机构:
Xi An Jiao Tong Univ, Sch Energy & Power Engn, Xian 710049, Peoples R ChinaXi An Jiao Tong Univ, Sch Chem Engn & Technol, Xian 710049, Shanxi, Peoples R China