3D Printed Fused Deposition Modeling (FDM) Capillaries for Chemiresistive Gas Sensors

被引:3
|
作者
Adamek, Martin [1 ,2 ]
Mlcek, Jiri [3 ]
Skowronkova, Nela [3 ]
Zvonkova, Magdalena [3 ]
Jasso, Miroslav [3 ]
Adamkova, Anna [3 ]
Skacel, Josef [2 ]
Buresova, Iva [4 ]
Sebestikova, Romana [4 ]
Cernekova, Martina [5 ]
Buckova, Martina [3 ]
机构
[1] Tomas Bata Univ Zlin, Fac Appl Informat, Dept Automat & Control Engn, Stranemi 4511, Zlin 76005, Czech Republic
[2] Brno Univ Technol, Fac Elect Engn & Commun, Dept Microelect, Technicka 3058-10, Brno 61600, Czech Republic
[3] Tomas Bata Univ Zlin, Fac Technol, Dept Food Anal & Chem, Vavreckova 5669, Zlin 76001, Czech Republic
[4] Tomas Bata Univ Zlin, Fac Technol, Dept Food Technol, Vavreckova 5669, Zlin 76001, Czech Republic
[5] Tomas Bata Univ Zlin, Fac Technol, Dept Fat Surfactant & Cosmet Technol, Vavreckova 5669, Zlin 76001, Czech Republic
关键词
chemiresistive gas sensors; 3D printing; FDM; PLA; capillary; foods; COLUMNS; MEAT; STATE;
D O I
10.3390/s23156817
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
This paper discusses the possible use of 3D fused deposition modeling (FDM) to fabricate capillaries for low-cost chemiresistive gas sensors that are often used in various applications. The disadvantage of these sensors is low selectivity, but 3D printed FDM capillaries have the potential to increase their selectivity. Capillaries with 1, 2 and 3 tiers with a length of 1.5 m, 3.1 m and 4.7 m were designed and manufactured. Food and goods available in the general trade network were used as samples (alcohol, seafood, chicken thigh meat, acetone-free nail polish remover and gas from a gas lighter) were also tested. The "Vodka" sample was used as a standard for determining the effect of capillary parameters on the output signal of the MiCS6814 sensor. The results show the shift of individual parts of the signal in time depending on the parameters of the capillary and the carrier air flow. A three-tier capillary was chosen for the comparison of gas samples with each other. The graphs show the differences between individual samples, not only in the height of the output signal but also in its time characteristic. The tested 3D printed FDM capillaries thus made it possible to characterize the output response by also using an inexpensive chemiresistive gas sensor in the time domain.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Fused Deposition Modeling (FDM) 3D Printed Tablets for Intragastric Floating Delivery of Domperidone
    Chai, Xuyu
    Chai, Hongyu
    Wang, Xiaoyu
    Yang, Jingjing
    Li, Jin
    Zhao, Yan
    Cai, Weimin
    Tao, Tao
    Xiang, Xiaoqiang
    SCIENTIFIC REPORTS, 2017, 7
  • [2] Fused Deposition Modeling (FDM) 3D Printed Tablets for Intragastric Floating Delivery of Domperidone
    Xuyu Chai
    Hongyu Chai
    Xiaoyu Wang
    Jingjing Yang
    Jin Li
    Yan Zhao
    Weimin Cai
    Tao Tao
    Xiaoqiang Xiang
    Scientific Reports, 7
  • [3] Experimental investigation on mechanical characterization of 3D printed PLA produced by fused deposition modeling (FDM)
    Moradi, Mahmoud
    Aminzadeh, Ahmad
    Rahmatabadi, Davood
    Hakimi, Alireza
    MATERIALS RESEARCH EXPRESS, 2021, 8 (03)
  • [4] Electroosmotic flow in fused deposition modeling (FDM) 3D-printed microchannels
    Barbosa, Fabio Henrique Barros
    Quero, Reverson Fernandes
    Rocha, Kionnys Novaes
    Costa, Samuel Carvalho
    de Jesus, Dosil Pereira
    ELECTROPHORESIS, 2023, 44 (5-6) : 558 - 562
  • [5] Quality of 3D Printed Objects Using Fused Deposition Modeling (FDM) Technology in Terms of Dimensional Accuracy
    Aljazara, Alaa
    Abu Tuhaimer, Nadine
    Alawwad, Ahmed
    Hani, Khalid Bani
    Qusef, Abdallah D.
    Alsalhi, Najeh Rajeh
    Al-Dawoodi, Aras
    INTERNATIONAL JOURNAL OF ONLINE AND BIOMEDICAL ENGINEERING, 2023, 19 (14) : 45 - 62
  • [6] Application of Thermoplastic Elastomer for 3D Printing by Fused Deposition Modeling(FDM)
    Timoshenko, M., V
    Balabanov, S., V
    Sychev, M. M.
    Nikiforov, D., I
    GLASS PHYSICS AND CHEMISTRY, 2021, 47 (05) : 502 - 504
  • [7] Application of Thermoplastic Elastomer for 3D Printing by Fused Deposition Modeling(FDM)
    M. V. Timoshenko
    S. V. Balabanov
    M. M. Sychev
    D. I. Nikiforov
    Glass Physics and Chemistry, 2021, 47 : 502 - 504
  • [8] Effect of Process Parameters and Material Selection on the Quality of 3D Printed Products by Fused Deposition Modeling (FDM): A Review
    Palanisamy, Sivasubramanian
    Karuppiah, Ganesan
    Kumar, Praveen
    Dharmalingam, Shanmugam
    Mubarak, Suhail
    Santulli, Carlo
    Ayrilmis, Nadir
    Karumuri, Srikanth
    ADVANCES IN POLYMER TECHNOLOGY, 2024, 2024
  • [9] Irregular surface output using FDM (Fused Deposition Modeling) 3D printer
    Lee, Jung-Soo
    Cha, Kyung-Chul
    JOURNAL OF THE KOREAN CRYSTAL GROWTH AND CRYSTAL TECHNOLOGY, 2022, 32 (01): : 33 - 39
  • [10] Low temperature fused deposition modeling (FDM) 3D printing of thermolabile drugs
    Kollamaram, Gayathri
    Croker, Denise M.
    Walker, Gavin M.
    Goyanes, Alvaro
    Basit, Abdul W.
    Gaisford, Simon
    INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2018, 545 (1-2) : 144 - 152