MULTIPLE NORMALIZED SOLUTIONS FOR A QUASI-LINEAR SCHRODINGER EQUATION VIA DUAL APPROACH

被引:4
作者
Zhang, Lin [1 ]
Li, Yongqing [1 ]
Wang, Zhi-qiang [1 ,2 ]
机构
[1] Fujian Normal Univ, Sch Math & Stat, Fujian 350000, Peoples R China
[2] Utah State Univ, Dept Math & Stat, Logan, UT 84322 USA
基金
中国国家自然科学基金;
关键词
Quasi-linear Schrodinger equations; normalized solutions; dual method; the minimax principle; SCALAR FIELD-EQUATIONS; CONCENTRATION-COMPACTNESS PRINCIPLE; ELLIPTIC-EQUATIONS; SOLITON-SOLUTIONS; STANDING WAVES; EXISTENCE; STABILITY; CALCULUS;
D O I
10.12775/TMNA.2022.052
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we construct multiple normalized solutions of the following from quasi-linear Schrodinger equation: -Delta u - Delta(|u|(2))u- mu u = |u|(p-2)u, in R-N, subject to a mass-sub critical constraint. In order to overcome non-smoothness of the associated variational formulation we make use of the dual approach. The constructed solutions possess energies being clustered at 0 level which makes it difficult to use existing methods for non-smooth variational problems such as the variational perturbation approach.
引用
收藏
页码:465 / 489
页数:25
相关论文
共 27 条
[1]   Blow-up phenomena and asymptotic profiles of ground states of quasilinear elliptic equations with H1-supercritical nonlinearities [J].
Adachi, Shinji ;
Shibata, Masataka ;
Watanabe, Tatsuya .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 256 (04) :1492-1514
[2]   Uniqueness of the ground state solutions of quasilinear Schrodinger equations [J].
Adachi, Shinji ;
Watanabe, Tatsuya .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (02) :819-833
[3]  
Ambrosetti A, 2003, DISCRETE CONT DYN-A, V9, P55
[4]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
[5]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P347
[6]   ORBITAL STABILITY OF STANDING WAVES FOR SOME NON-LINEAR SCHRODING EQUATIONS [J].
CAZENAVE, T ;
LIONS, PL .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1982, 85 (04) :549-561
[7]  
Cazenave T., 2003, Courant Lecture Notes in Mathematics, V10
[8]  
Chang K.C., 2005, Methods in nonlinear analysis, p1081.47001
[9]   Stability of standing waves for a class of quasilinear Schrodinger equations [J].
Chen, Jianqing ;
Li, Yongqing ;
Wang, Zhi-Qiang .
EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2012, 23 :611-633
[10]   Solutions for a quasilinear Schrodinger equation: a dual approach [J].
Colin, M ;
Jeanjean, L .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 56 (02) :213-226