Aging Property of Halide Solid Electrolyte at the Cathode Interface

被引:51
作者
Kim, Wonju [1 ]
Noh, Joohyeon [1 ]
Lee, Sunyoung [1 ]
Yoon, Kyungho [1 ]
Han, Sangwook [1 ]
Yu, Seungju [1 ]
Ko, Kun-Hee [1 ]
Kang, Kisuk [1 ,2 ,3 ,4 ,5 ]
机构
[1] Seoul Natl Univ, Dept Mat Sci & Engn, 1 Gwanak Ro, Seoul 08826, South Korea
[2] Seoul Natl Univ, Inst Engn Res, Coll Engn, 1 Gwanak Ro, Seoul 08826, South Korea
[3] Seoul Natl Univ, Inst Basic Sci, Ctr Nanoparticle Res, 1 Gwanak Ro, Seoul 08826, South Korea
[4] Seoul Natl Univ, Sch Chem & Biol Engn, Seoul 08826, South Korea
[5] Seoul Natl Univ, Inst Chem Proc, Seoul 08826, South Korea
关键词
calendar aging; composite cathode interface; halide solid electrolytes; intrinsic chemical reactivity; LITHIUM-ION BATTERIES; SUPERIONIC CONDUCTOR; RICH; DEGRADATION; EVOLUTION; IMPEDANCE; MODEL; BULK;
D O I
10.1002/adma.202301631
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Halide solid electrolytes have recently emerged as a promising option for cathode-compatible catholytes in solid-state batteries (SSBs), owing to their superior oxidation stability at high voltage and their interfacial stability. However, their day- to month-scale aging at the cathode interface has remained unexplored until now, while its elucidation is indispensable for practical deployment. Herein, the stability of halide solid electrolytes (e.g., Li3InCl6) when used with conventional layered oxide cathodes during extended calendar aging is investigated. It is found that, contrary to their well-known oxidation stability, halide solid electrolytes can be vulnerable to reductive side reactions with oxide cathodes (e.g., LiNi0.8Co0.1Mn0.1O2) in the long term. More importantly, the calendar aging at a low state of charge or as-fabricated state causes more significant degradation than at a high state of charge, in contrast to typical lithium-ion batteries, which are more susceptible to high-state-of-charge calendar aging. This unique characteristic of halide-based SSBs is related to the reduction propensity of metal ions in halide solid electrolytes and correlated to the formation of an interphase due to the reductive decomposition triggered by the oxide cathode in a lithiated state. This understanding of the long-term aging properties provides new guidelines for the development of cathode-compatible halide solid electrolytes.
引用
收藏
页数:10
相关论文
共 64 条
[1]   Solid Halide Electrolytes with High Lithium-Ion Conductivity for Application in 4 V Class Bulk-Type All-Solid-State Batteries [J].
Asano, Tetsuya ;
Sakai, Akihiro ;
Ouchi, Satoru ;
Sakaida, Masashi ;
Miyazaki, Akinobu ;
Hasegawa, Shinya .
ADVANCED MATERIALS, 2018, 30 (44)
[2]   Structural Changes and Thermal Stability of Charged LiNixMnyCozO2 Cathode Materials Studied by Combined In Situ Time-Resolved XRD and Mass Spectroscopy [J].
Bak, Seong-Min ;
Hu, Enyuan ;
Zhou, Yongning ;
Yu, Xiqian ;
Senanayake, Sanjaya D. ;
Cho, Sung-Jin ;
Kim, Kwang-Bum ;
Chung, Kyung Yoon ;
Yang, Xiao-Qing ;
Nam, Kyung-Wan .
ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (24) :22594-22601
[3]   Gas Evolution in All-Solid-State Battery Cells [J].
Bartsch, Timo ;
Strauss, Florian ;
Hatsukade, Toni ;
Schiele, Alexander ;
Kim, A-Young ;
Hartmann, Pascal ;
Janek, Juergen ;
Brezesinski, Torsten .
ACS ENERGY LETTERS, 2018, 3 (10) :2539-2543
[4]   Reaction of Li1.3Al0.3Ti1.7(PO4)3 and LiNi0.6Co0.2Mn0.2O2 in Co-Sintered Composite Cathodes for Solid-State Batteries [J].
Beaupain, Jean Philippe ;
Waetzig, Katja ;
Otto, Svenja-Katharina ;
Henss, Anja ;
Janek, Juergen ;
Malaki, Michael ;
Pokle, Anuj ;
Mueller, Julian ;
Butz, Benjamin ;
Volz, Kerstin ;
Kusnezoff, Mihails ;
Michaelis, Alexander .
ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (40) :47488-47498
[5]   IMPROVED TETRAHEDRON METHOD FOR BRILLOUIN-ZONE INTEGRATIONS [J].
BLOCHL, PE ;
JEPSEN, O ;
ANDERSEN, OK .
PHYSICAL REVIEW B, 1994, 49 (23) :16223-16233
[6]   Main aging mechanisms in Li ion batteries [J].
Broussely, M ;
Biensan, P ;
Bonhomme, F ;
Blanchard, P ;
Herreyre, S ;
Nechev, K ;
Staniewicz, RJ .
JOURNAL OF POWER SOURCES, 2005, 146 (1-2) :90-96
[7]   Aging mechanism in Li ion cells and calendar life predictions [J].
Broussely, M ;
Herreyre, S ;
Biensan, P ;
Kasztejna, P ;
Nechev, K ;
Staniewicz, RJ .
JOURNAL OF POWER SOURCES, 2001, 97-8 :13-21
[8]   Predicting accurate cathode properties of layered oxide materials using the SCAN meta-GGA density functional [J].
Chakraborty, Arup ;
Dixit, Mudit ;
Aurbach, Doron ;
Major, Dan T. .
NPJ COMPUTATIONAL MATERIALS, 2018, 4
[9]   Li6PS5X:: A class of crystalline Li-rich solids with an unusually high Li+ mobility [J].
Deiseroth, Hans-Joerg ;
Kong, Shiao-Tong ;
Eckert, Hellmut ;
Vannahme, Julia ;
Reiner, Christof ;
Zaiss, Torsten ;
Schlosser, Marc .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (04) :755-758
[10]   Calendar and cycle life study of Li(NiMnCo)O2-based 18650 lithiumion batteries [J].
Ecker, Madeleine ;
Nieto, Nerea ;
Kaebitz, Stefan ;
Schmalstieg, Johannes ;
Blanke, Holger ;
Warnecke, Alexander ;
Sauer, Dirk Uwe .
JOURNAL OF POWER SOURCES, 2014, 248 :839-851