Machine Learning and Big Data Analysis in the Field of Catalysis (A Review)

被引:2
作者
Filippov, V. G. [1 ]
Mikhailov, Ya. A. [1 ]
Elyshev, A. V. [1 ]
机构
[1] Univ Tyumen, TsyfroCatLab Grp, Tyumen 625003, Russia
关键词
catalysis; IR spectroscopy; X-ray absorption spectroscopy; machine learning; computer simulation; ACTIVE-SITE; SPECTROSCOPY; CO; OXIDATION;
D O I
10.1134/S0023158423020027
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Recently, the rapid development of experimental methods in the field of catalytic research allows for large amounts of data to be obtained. The use of new statistical and computational processing methods, including the extraction of information from experimental data and their unbiased interpretation, is important for accelerating the development and implementation of catalytic technologies. Necessary information can be extracted using statistical approaches such as PCA, MCR, and ALS. At the same time, machine learning algorithms are beginning to be actively used to interpret and build descriptive models. This paper discusses the main methods of machine learning and examples of their successful application to the analysis of infrared and X-ray absorption spectroscopic data.
引用
收藏
页码:122 / 134
页数:13
相关论文
共 34 条
  • [1] Agarwal N., 2021, SMART INNOVATIONS CO
  • [2] Chanussot L., 2020, 2020 VIRT AICHE ANN
  • [3] An open access, integrated XAS data repository at Diamond Light Source
    Cibin, Giannantonio
    Gianolio, Diego
    Parry, Stephen A.
    Schoonjans, Tom
    Moore, Oliver
    Draper, Rachael
    Miller, Laura A.
    Thoma, Alexander
    Doswell, Claire L.
    Graham, Abigail
    [J]. RADIATION PHYSICS AND CHEMISTRY, 2020, 175
  • [4] Dai Q., 2016, International Journal of Database Theory and Application, V9, P1, DOI DOI 10.14257/IJDTA.2016.9.5.01
  • [5] CO Desorption Rate Dependence on CO Partial Pressure over Platinum Fuel Cell Catalysts
    Davies, J. C.
    Nielsen, R. M.
    Thomsen, L. B.
    Chorkendorff, I.
    Logadottir, A.
    Lodziana, Z.
    Norskov, J. K.
    Li, W. X.
    Hammer, B.
    Longwitz, S. R.
    Schnadt, J.
    Vestergaard, E. K.
    Vang, R. T.
    Besenbacher, F.
    [J]. FUEL CELLS, 2004, 4 (04) : 309 - 319
  • [6] Modeling of Catalytic Reforming: Effect of Kinetic Parameters on the Expected Composition of Products
    Dyusembaeva, A. A.
    Vershinin, V. I.
    [J]. KINETICS AND CATALYSIS, 2019, 60 (01) : 106 - 111
  • [7] Rapid identification of closely related muscle foods by vibrational spectroscopy and machine learning
    Ellis, DI
    Broadhurst, D
    Clarke, SJ
    Goodacre, R
    [J]. ANALYST, 2005, 130 (12) : 1648 - 1654
  • [8] Recent advances in knowledge discovery for heterogeneous catalysis using machine learning
    Gunay, M. Erdem
    Yildirim, Ramazan
    [J]. CATALYSIS REVIEWS-SCIENCE AND ENGINEERING, 2021, 63 (01): : 120 - 164
  • [9] The effect of principal component analysis on machine learning accuracy with high dimensional spectral data
    Howley, T
    Madden, MG
    O'Connell, ML
    Ryder, AG
    [J]. APPLICATIONS AND INNOVATIONS IN INTELLIGENT SYSTEMS XIII, 2006, : 209 - +
  • [10] Huth F, 2011, NAT MATER, V10, P352, DOI [10.1038/NMAT3006, 10.1038/nmat3006]