Automatic Detection of Peripheral Retinal Lesions From Ultrawide-Field Fundus Images Using Deep Learning

被引:8
作者
Tang, Yi-Wen [1 ]
Ji, Jie [2 ]
Lin, Jian-Wei [1 ]
Wang, Ji [1 ]
Wang, Yun [1 ]
Liu, Zibo [1 ]
Hu, Zhanchi [1 ]
Yang, Jian-Feng [1 ]
Ng, Tsz Kin [1 ,3 ,4 ]
Zhang, Mingzhi [1 ]
Pang, Chi Pui [1 ,4 ]
Cen, Ling-Ping [1 ]
机构
[1] Shantou Univ, Chinese Univ Hong Kong, Joint Shantou Int Eye Ctr, Shantou, Guangdong, Peoples R China
[2] Shantou Univ, Network & Informat Ctr, Shantou, Guangdong, Peoples R China
[3] Shantou Univ, Med Coll, Shantou, Guangdong, Peoples R China
[4] Chinese Univ Hong Kong, Dept Ophthalmol & Visual Sci, Hong Kong, Peoples R China
来源
ASIA-PACIFIC JOURNAL OF OPHTHALMOLOGY | 2023年 / 12卷 / 03期
基金
中国国家自然科学基金;
关键词
binary classification; deep learning; multilabel classification; peripheral retinal lesions; ultrawide-field fundus images; ARTIFICIAL-INTELLIGENCE; DETACHMENT; DIAGNOSIS; POSTERIOR; BREAKS; AREAS; EYES;
D O I
10.1097/APO.0000000000000599
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
Purpose:To establish a multilabel-based deep learning (DL) algorithm for automatic detection and categorization of clinically significant peripheral retinal lesions using ultrawide-field fundus images. Methods:A total of 5958 ultrawide-field fundus images from 3740 patients were randomly split into a training set, validation set, and test set. A multilabel classifier was developed to detect rhegmatogenous retinal detachment, cystic retinal tuft, lattice degeneration, and retinal breaks. Referral decision was automatically generated based on the results of each disease class. t-distributed stochastic neighbor embedding heatmaps were used to visualize the features extracted by the neural networks. Gradient-weighted class activation mapping and guided backpropagation heatmaps were generated to investigate the image locations for decision-making by the DL models. The performance of the classifier(s) was evaluated by sensitivity, specificity, accuracy, F-1 score, area under receiver operating characteristic curve (AUROC) with 95% CI, and area under the precision-recall curve. Results:In the test set, all categories achieved a sensitivity of 0.836-0.918, a specificity of 0.858-0.989, an accuracy of 0.854-0.977, an F-1 score of 0.400-0.931, an AUROC of 0.9205-0.9882, and an area under the precision-recall curve of 0.6723-0.9745. The referral decisions achieved an AUROC of 0.9758 (95% CI= 0.9648-0.9869). The multilabel classifier had significantly better performance in cystic retinal tuft detection than the binary classifier (AUROC= 0.9781 vs 0.6112, P < 0.001). The model showed comparable performance with human experts. Conclusions:This new DL model of a multilabel classifier is capable of automatic, accurate, and early detection of clinically significant peripheral retinal lesions with various sample sizes. It can be applied in peripheral retinal screening in clinics.
引用
收藏
页码:284 / 292
页数:9
相关论文
共 44 条
[1]  
[Anonymous], 2015, Encyclopedia of biometrics
[2]  
Byer N E, 1981, Dev Ophthalmol, V2, P36
[3]   Automatic detection of 39 fundus diseases and conditions in retinal photographs using deep neural networks [J].
Cen, Ling-Ping ;
Ji, Jie ;
Lin, Jian-Wei ;
Ju, Si-Tong ;
Lin, Hong-Jie ;
Li, Tai-Ping ;
Wang, Yun ;
Yang, Jian-Feng ;
Liu, Yu-Fen ;
Tan, Shaoying ;
Tan, Li ;
Li, Dongjie ;
Wang, Yifan ;
Zheng, Dezhi ;
Xiong, Yongqun ;
Wu, Hanfu ;
Jiang, Jingjing ;
Wu, Zhenggen ;
Huang, Dingguo ;
Shi, Tingkun ;
Chen, Binyao ;
Yang, Jianling ;
Zhang, Xiaoling ;
Luo, Li ;
Huang, Chukai ;
Zhang, Guihua ;
Huang, Yuqiang ;
Ng, Tsz Kin ;
Chen, Haoyu ;
Chen, Weiqi ;
Pang, Chi Pui ;
Zhang, Mingzhi .
NATURE COMMUNICATIONS, 2021, 12 (01)
[4]   Deep learning algorithms for detection of critical findings in head CT scans: a retrospective study [J].
Chilamkurthy, Sasank ;
Ghosh, Rohit ;
Tanamala, Swetha ;
Biviji, Mustafa ;
Campeau, Norbert G. ;
Venugopal, Vasantha Kumar ;
Mahajan, Vidur ;
Rao, Pooja ;
Warier, Prashant .
LANCET, 2018, 392 (10162) :2388-2396
[5]  
Chollet F, 2017, Arxiv, DOI [arXiv:1610.02357, DOI 10.48550/ARXIV.1610.02357]
[6]   Ultra-Widefield Steering-Based Spectral-Domain Optical Coherence Tomography Imaging of the Retinal Periphery [J].
Choudhry, Netan ;
Golding, John ;
Manry, Matthew W. ;
Rao, Rajesh C. .
OPHTHALMOLOGY, 2016, 123 (06) :1368-1374
[7]   Symptomatic posterior vitreous detachment and the incidence of delayed retinal breaks: Case series and meta-analysis [J].
Coffee, Robert E. ;
Westfall, Andrew C. ;
Davis, Garvin H. ;
Mieler, William F. ;
Holz, Eric R. .
AMERICAN JOURNAL OF OPHTHALMOLOGY, 2007, 144 (03) :409-413
[8]   COMPARING THE AREAS UNDER 2 OR MORE CORRELATED RECEIVER OPERATING CHARACTERISTIC CURVES - A NONPARAMETRIC APPROACH [J].
DELONG, ER ;
DELONG, DM ;
CLARKEPEARSON, DI .
BIOMETRICS, 1988, 44 (03) :837-845
[9]   Validation of Soft Labels in Developing Deep Learning Algorithms for Detecting Lesions of Myopic Maculopathy From Optical Coherence Tomographic Images [J].
Du, Ran ;
Xie, Shiqi ;
Fang, Yuxin ;
Hagino, Shinichi ;
Yamamoto, Shinji ;
Moriyama, Muka ;
Yoshida, Takeshi ;
Igarashi-Yokoi, Tae ;
Takahashi, Hiroyuki ;
Nagaoka, Natsuko ;
Uramoto, Kengo ;
Onishi, Yuka ;
Watanabe, Takashi ;
Nakao, Noriko ;
Takahashi, Tomonari ;
Kaneko, Yuichiro ;
Azuma, Takeshi ;
Hatake, Ryoma ;
Nomura, Takuhei ;
Sakura, Tatsuro ;
Yana, Mariko ;
Xiong, Jianping ;
Chen, Changyu ;
Ohno-Matsui, Kyoko .
ASIA-PACIFIC JOURNAL OF OPHTHALMOLOGY, 2022, 11 (03) :227-236
[10]   A NATIONWIDE STUDY ON THE INCIDENCE OF RHEGMATOGENOUS RETINAL DETACHMENT IN DENMARK, WITH EMPHASIS ON THE RISK OF THE FELLOW EYE [J].
Hajari, Javad N. ;
Bjerrum, Soren S. ;
Christensen, Ulrik ;
Kiilgaard, Jens F. ;
Bek, Toke ;
La Cour, Morten .
RETINA-THE JOURNAL OF RETINAL AND VITREOUS DISEASES, 2014, 34 (08) :1658-1665