Nonlinear identifiability analysis of Multiphase Porous Electrode Theory-based battery models: A Lithium Iron Phosphate case study

被引:13
作者
Galuppini, Giacomo [1 ]
Berliner, Marc D. [1 ]
Cogswell, Daniel A. [1 ]
Zhuang, Debbie [1 ]
Bazant, Martin Z. [1 ]
Braatz, Richard D. [1 ]
机构
[1] MIT, Cambridge, MA 02139 USA
关键词
Lithium-ion batteries; Lithium Iron Phosphate; Graphite; Multiphase Porous Electrode Theory; Parameter estimation; Identifiability analysis; LI-ION BATTERIES; PARAMETER-ESTIMATION; SENSITIVITY-ANALYSIS; PHASE-SEPARATION; FREE-ENERGY; INTERCALATION; CHALLENGES; IDENTIFICATION; DEPENDENCE; FRAMEWORK;
D O I
10.1016/j.jpowsour.2023.233009
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Porous electrode theory (PET) is widely used to model battery dynamics by describing electrochemical kinetics and transport in solid particles and electrolyte. Standard PET models rely on black-box descriptions of the thermodynamics of active materials, typically obtained by fitting an open-circuit potential which does not allow for a consistent description of phase-separating materials. Multiphase PET (MPET) was recently developed to describe batteries using white-or gray-box descriptions of the thermodynamics with additional parameters that need to be estimated from experimental data. This work analyzes the identifiability of parameters in the MPET model, including the standard kinetics and diffusion parameters, as well as MPET-specific parameters for the free energy of active materials. Based on synthetic discharge data, both linearized and nonlinear identifiability analyses are performed for an MPET model of a commercial Lithium Iron Phosphate/Graphite battery, which identify which model parameters are not identifiable and which are identifiable only with large uncertainty. The identifiable parameters control phase separation, reaction kinetics, and electrolyte transport, but not solid diffusion, consistent with rate limitation by intercalation reactions at low rates and by electrolyte diffusion at high rates. The article also proposes approaches for reducing parameter identifiability issues.
引用
收藏
页数:13
相关论文
共 75 条
[1]  
A123 Systems official website, US
[2]   Enabling fast charging - A battery technology gap assessment [J].
Ahmed, Shabbir ;
Bloom, Ira ;
Jansen, Andrew N. ;
Tanim, Tanvir ;
Dufek, Eric J. ;
Pesaran, Ahmad ;
Burnham, Andrew ;
Carlson, Richard B. ;
Dias, Fernando ;
Hardy, Keith ;
Keyser, Matthew ;
Kreuzer, Cory ;
Markel, Anthony ;
Meintz, Andrew ;
Michelbacher, Christopher ;
Mohanpurkar, Manish ;
Nelson, Paul A. ;
Robertson, David. C. ;
Scoffield, Don ;
Shirk, Matthew ;
Stephens, Thomas ;
Vijayagopal, Ram ;
Zhang, Jiucai .
JOURNAL OF POWER SOURCES, 2017, 367 :250-262
[3]   MICROSCOPIC THEORY FOR ANTIPHASE BOUNDARY MOTION AND ITS APPLICATION TO ANTIPHASE DOMAIN COARSENING [J].
ALLEN, SM ;
CAHN, JW .
ACTA METALLURGICA, 1979, 27 (06) :1085-1095
[4]   Capacity fade modeling of a Lithium-ion battery for electric vehicles [J].
Baek, K. W. ;
Hong, E. S. ;
Cha, S. W. .
INTERNATIONAL JOURNAL OF AUTOMOTIVE TECHNOLOGY, 2015, 16 (02) :309-315
[5]   Charge transfer kinetics at the solid-solid interface in porous electrodes [J].
Bai, Peng ;
Bazant, Martin Z. .
NATURE COMMUNICATIONS, 2014, 5
[6]   Suppression of Phase Separation in LiFePO4 Nanoparticles During Battery Discharge [J].
Bai, Peng ;
Cogswell, Daniel A. ;
Bazant, Martin Z. .
NANO LETTERS, 2011, 11 (11) :4890-4896
[7]   Lithium Ion Battery Models and Parameter Identification Techniques [J].
Barcellona, Simone ;
Piegari, Luigi .
ENERGIES, 2017, 10 (12)
[8]   Theory of Chemical Kinetics and Charge Transfer based on Nonequilibrium Thermodynamics [J].
Bazant, Martin Z. .
ACCOUNTS OF CHEMICAL RESEARCH, 2013, 46 (05) :1144-1160
[9]  
Beck JV, 1977, Parameter Estimation in Engineering and Science
[10]   Nonlinear Identifiability Analysis of the Porous Electrode Theory Model of Lithium-Ion Batteries [J].
Berliner, Marc D. ;
Zhao, Hongbo ;
Das, Supratim ;
Forsuelo, Michael ;
Jiang, Benben ;
Chueh, William H. ;
Bazant, Martin Z. ;
Braatz, Richard D. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2021, 168 (09)