Facile synthesis of NiTe2-Co2Te2@rGO nanocomposite for high-performance hybrid supercapacitor

被引:28
作者
Farshadnia, Maziar [1 ]
Ensafi, Ali A. [1 ,2 ]
Mousaabadi, Kimia Zarean [1 ]
Rezaei, Behzad [1 ]
Demir, Muslum [3 ,4 ]
机构
[1] Isfahan Univ Technol, Dept Chem, Esfahan 8415683111, Iran
[2] Univ Arkansas, Dept Chem & Biochem, Fayetteville, AR 72701 USA
[3] Osmaniye Korkut Ata Univ, Dept Chem Engn, Osmaniye, Turkiye
[4] Tubitak Marmara Res Ctr, Mat Inst, TR-41470 Gebze, Turkiye
基金
英国科研创新办公室;
关键词
ELECTRODE MATERIAL; HYDROTHERMAL SYNTHESIS; ENERGY; NANOSHEETS; NITE; STABILITY; BATTERIES; NANORODS;
D O I
10.1038/s41598-023-28581-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The design of bimetallic tellurides that exhibit excellent electrochemical properties remains a huge challenge for high-performance supercapacitors. In the present study, tellurium is consolidated on CoNi2@rGO for the first time, to synthesize NiTe2-Co2Te2@rGO nanocomposite by using a facile hydrothermal method. As-prepared NiTe2-Co2Te2@rGO nanocomposite was characterized by EDS, TEM, FESEM, Raman, BET, XRD, and XPS techniques to prove the structural transformation. Upon the electrochemical characterization, NiTe2-Co2Te2@rGO has notably presented numerous active sites and enhanced contact sites with the electrolyte solution during the faradic reaction. The as-prepared nanocomposite reveals a specific capacity of 223.6 mAh g(-1) in 1.0 M KOH at 1.0 A g(-1). Besides, it could retain 89.3% stability after 3000 consecutive galvanostatic charge-discharge cycles at 1.0 A g(-1) current density. The hybrid supercapacitor, fabricated by activated carbon as an anode site, and NiTe2-Co2Te2@rGO as a cathode site, presents a potential window of 1.60 V with an energy density of 51 Wh kg(-1) and a power density of 800 W kg(-1); this electrode is capable of lighting up two red LED lamps and a yellow LED lamp for 20 min, which is connected in parallel. The present work opens new avenues to design and fabrication of nanocomposite electrode materials in the field of supercapacitors.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Facile construction of MoS2/RCF electrode for high-performance supercapacitor
    Zhao, Chunhua
    Zhou, Yanan
    Ge, Zhengxiang
    Zhao, Chongjun
    Qian, Xiuzhen
    CARBON, 2018, 127 : 699 - 706
  • [32] Facile solvothermal synthesis of NiFe2O4 nanoparticles for high-performance supercapacitor applications
    Sethi, Meenaketan
    Shenoy, U. Sandhya
    Muthu, Selvakumar
    Bhat, D. Krishna
    FRONTIERS OF MATERIALS SCIENCE, 2020, 14 (02) : 120 - 132
  • [33] The construction of hierarchical PEDOT@MoS2 nanocomposite for high-performance supercapacitor
    Cai, Yue
    Kang, Huan
    Jiang, Fengxing
    Xu, Liming
    He, Yao
    Xu, Jingkun
    Duan, Xuemin
    Zhou, Weiqiang
    Lu, Xinyu
    Xu, Quan
    APPLIED SURFACE SCIENCE, 2021, 546
  • [34] Co3S4-CoS/rGO hybrid nanostructure: promising material for high-performance and high-rate capacity supercapacitor
    Nandhini, S.
    Muralidharan, G.
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2021, 25 (02) : 465 - 477
  • [35] Silver wrapped MoS2 hybrid electrode materials for high-performance supercapacitor
    Wu, Zhuangzhi
    Xie, Lu
    Xiao, Yuanyuan
    Wang, Dezhi
    JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 708 : 763 - 768
  • [36] Hydrothermal Synthesis of α-MnS Nanoflakes@Nitrogen and Sulfur Co-doped rGO for High-Performance Hybrid Supercapacitor
    Mohamed, Saad G.
    Attia, Sayed Y.
    Barakat, Yosry F.
    Hassan, Hamdy H.
    Zoubi, Wail Al
    CHEMISTRYSELECT, 2018, 3 (22): : 6061 - 6072
  • [37] Hydrothermal synthesis of MoS2 and WS2 nanoparticles for high-performance supercapacitor applications
    Nagaraju, Chandu
    Gopi, Chandu V. V. Muralee
    Ahn, Jin-Woo
    Kim, Hee-Je
    NEW JOURNAL OF CHEMISTRY, 2018, 42 (15) : 12357 - 12360
  • [38] Hierarchically nanostructured Zn0.76C0.24S@Co(OH)2 for high-performance hybrid supercapacitor
    Ren, Xiaohe
    Sun, Mengxuan
    Gan, Ziwei
    Li, Zhijie
    Cao, Baobao
    Shen, Wenzhong
    Fu, YongQing
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2022, 618 : 88 - 97
  • [39] Synthesis of multiwall carbon nanotube wrapped Co(OH)2 flakes: A high-performance supercapacitor
    Mondal, Chanchal
    Ghosh, Debasis
    Ganguly, Mainak
    Sasmal, Anup Kumar
    Roy, Anindita
    Pal, Tarasankar
    APPLIED SURFACE SCIENCE, 2015, 359 : 500 - 507
  • [40] Facile Fabrication of Polyaniline/Pbs Nanocomposite for High-Performance Supercapacitor Application
    Gamal, Ahmed
    Shaban, Mohamed
    BinSabt, Mohammad
    Moussa, Mahmoud
    Ahmed, Ashour M. M.
    Rabia, Mohamed
    Hamdy, Hany
    NANOMATERIALS, 2022, 12 (05)