A new approach to design electromagnetic transducers for wideband electrically-tuned vibration energy harvesting

被引:5
作者
Delattre, Gallien [1 ,4 ]
Vigne, Sebastien [2 ]
Brenes, Alexis [3 ]
Garraud, Nicolas [1 ]
Freychet, Olivier [1 ]
Boisseau, Sebastien [1 ,4 ]
机构
[1] Univ Grenoble Alpes, CEA, Leti, Grenoble, France
[2] CEA, DAM, DIF, Arpajon, France
[3] Univ Paris Saclay, Univ Paris Sud, Ctr Nanosci & Nanotechnol, CNRS, Saclay, France
[4] Univ Grenoble Alpes, CEA, Leti, 17,Ave Martyrs, F-38000 Grenoble, France
关键词
Multi-physical modeling; wideband vibration energy harvesting; electromagnetic transducers; electrical tuning; DEVICE;
D O I
10.1177/1045389X221135017
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper focuses on the opportunities offered by electrical tuning to widen the bandwidth of Vibration Energy Harvesters (VEH) based on electromagnetic conversion. The paper shows that some electromagnetic transducer topologies are more likely than others to take advantage of the wide bandwidth performance offered by electrical tuning. Using a general model including both a resonant electromagnetic VEH and a resistive-capacitive interface with electrical tuning, we highlight the parameters of interest influencing the bandwidth of the system. Based on these results, we develop an efficient optimization approach suitable for any electromagnetic transducer topology. The full optimization of different transducer topologies shows that the one that is based on variable reluctance is the best in terms of bandwidth-related performances.
引用
收藏
页码:1314 / 1329
页数:16
相关论文
共 27 条
[1]   Self-powered resonant frequency tuning for Piezoelectric Vibration Energy Harvesters [J].
Ahmed-Seddik, B. ;
Despesse, G. ;
Boisseau, S. ;
Defay, E. .
13TH INTERNATIONAL CONFERENCE ON MICRO AND NANOTECHNOLOGY FOR POWER GENERATION AND ENERGY CONVERSION APPLICATIONS (POWERMEMS 2013), 2013, 476
[2]   Energy harvesting from ambient vibrations: Electromagnetic device and synchronous extraction circuit [J].
Arroyo, Emmanuelle ;
Badel, Adrien ;
Formosa, Fabien .
JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2013, 24 (16) :2023-2035
[3]   Magnetic tuning of a kinetic energy harvester using variable reluctance [J].
Ayala-Garcia, I. N. ;
Mitcheson, P. D. ;
Yeatman, E. M. ;
Zhu, D. ;
Tudor, J. ;
Beeby, S. P. .
SENSORS AND ACTUATORS A-PHYSICAL, 2013, 189 :266-275
[4]   A micro electromagnetic generator for vibration energy harvesting [J].
Beeby, S. P. ;
Torah, R. N. ;
Tudor, M. J. ;
Glynne-Jones, P. ;
O'Donnell, T. ;
Saha, C. R. ;
Roy, S. .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2007, 17 (07) :1257-1265
[5]   Tunable spring balanced magnetic energy harvester for low frequencies and small displacements [J].
Bjurstrom, Johan ;
Ohlsson, Fredrik ;
Vikerfors, Andreas ;
Rusu, Cristina ;
Johansson, Christer .
ENERGY CONVERSION AND MANAGEMENT, 2022, 259
[6]   An autonomous switch based on a rotating magnet driven by magnetic launchers [J].
Boisseau, Sebastien ;
Tosoni, Olivier ;
Delette, Gerard ;
Alessandri, Baptiste ;
Boucaud, Matthieu ;
Bohnke, Marc ;
Despesse, Ghislain ;
Cellier, Christophe ;
Rannou, Fabien ;
Baeza, Alexandre ;
Perrot, Alexandre ;
Daccord, Marcel ;
Cessot, Stephane ;
Leprince, Jerome ;
Vulcano, Bruno ;
Bossan, Christian .
SMART MATERIALS AND STRUCTURES, 2021, 30 (02)
[7]   Large-bandwidth piezoelectric energy harvesting with frequency-tuning synchronized electric charge extraction [J].
Brenes, A. ;
Morel, A. ;
Gibus, D. ;
Yoo, C. -S. ;
Gasnier, P. ;
Lefeuvre, E. ;
Badel, A. .
SENSORS AND ACTUATORS A-PHYSICAL, 2020, 302
[8]   Tuning a resonant energy harvester using a generalized electrical load [J].
Cammarano, A. ;
Burrow, S. G. ;
Barton, D. A. W. ;
Carrella, A. ;
Clare, L. R. .
SMART MATERIALS AND STRUCTURES, 2010, 19 (05)
[9]  
Cartwright KV., 2008, TECH INTERFACE, V8, P1
[10]  
Charnegie, 2007, THESIS U PITTSBURGH