Covid-19 classification using sigmoid based hyper-parameter modified DNN for CT scans and chest X-rays

被引:2
作者
Anilkumar, B. [1 ]
Srividya, K. [2 ]
Sowjanya, A. Mary [3 ]
机构
[1] GMR Inst Technol, Dept ECE, Rajam, India
[2] GMR Inst Technol, Dept CSE, Rajam, India
[3] Andhra Univ Coll Engn, Dept CS&SE, Visakhapatnam, Andhra Pradesh, India
关键词
Pre-processing; Sigmoid value; DNN; AGWO; Covid-19; Gaussian filter; DEEP; CORONAVIRUS;
D O I
10.1007/s11042-022-13783-2
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Coronavirus disease (COVID-19) is an infectious disease caused by the SARS-CoV-2 virus. Diagnosis of Computed Tomography (CT), and Chest X-rays (CXR) contains the problem of overfitting, earlier diagnosis, and mode collapse. In this work, we predict the classification of the Corona in CT and CXR images. Initially, the images of the dataset are pre-processed using the function of an adaptive Gaussian filter for de-nosing the image. Once the image is pre-processed it goes to Sigmoid Based Hyper-Parameter Modified DNN(SHMDNN). The hyperparameter modification makes use of the optimization algorithm of adaptive grey wolf optimization (AGWO). Finally, classification takes place and classifies the CT and CXR images into 3 categories namely normal, Pneumonia, and COVID-19 images. Better accuracy of 99.9% is reached when compared to different DNN networks.
引用
收藏
页码:12513 / 12536
页数:24
相关论文
共 42 条
[1]   Prediction of COVID-19 confirmed cases combining deep learning methods and Bayesian optimization [J].
Abbasimehr, Hossein ;
Paki, Reza .
CHAOS SOLITONS & FRACTALS, 2021, 142
[2]   CoAID-DEEP: An Optimized Intelligent Framework for Automated Detecting COVID-19 Misleading Information on Twitter [J].
Abdelminaam, Diaa Salama ;
Ismail, Fatma Helmy ;
Taha, Mohamed ;
Taha, Ahmed ;
Houssein, Essam H. ;
Nabil, Ayman .
IEEE ACCESS, 2021, 9 :27840-27867
[3]   COVID-CT-MD, COVID-19 computed tomography scan dataset applicable in machine learning and deep learning [J].
Afshar, Parnian ;
Heidarian, Shahin ;
Enshaei, Nastaran ;
Naderkhani, Farnoosh ;
Rafiee, Moezedin Javad ;
Oikonomou, Anastasia ;
Fard, Faranak Babaki ;
Samimi, Kaveh ;
Plataniotis, Konstantinos N. ;
Mohammadi, Arash .
SCIENTIFIC DATA, 2021, 8 (01)
[4]  
Akshitha B., 2021, Journal of Physics: Conference Series, V1916, DOI [10.1088/1742-6596/1916/1/012064, 10.1088/1742-6596/1916/1/012064]
[5]   COVID-DeepNet: Hybrid Multimodal Deep Learning System for Improving COVID-19 Pneumonia Detection in Chest X-ray Images [J].
Al-Waisy, A. S. ;
Mohammed, Mazin Abed ;
Al-Fandawi, Shumoos ;
Maashi, M. S. ;
Garcia-Zapirain, Begonya ;
Abdulkareem, Karrar Hameed ;
Mostafa, S. A. ;
Kumar, Nallapaneni Manoj ;
Dac-Nhuong Le .
CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 67 (02) :2409-2429
[7]  
Ben Ahmed K, 2021, IEEE ACCESS, V9, P72970, DOI [10.1109/access.2021.3079716, 10.1109/ACCESS.2021.3079716]
[8]  
Berry Michael Victor., 2021, Philosophers on Philosophy: The 2020 PhilPapers Survey, P1, DOI DOI 10.1109/WIDSTAIF52235.2021.9430229
[9]  
Cadena L., 2017, Proceedings of the World Congress on Engineering, V1, P5
[10]  
Castiglione A, 2021, IEEE T IND INFORM, V17, P6480, DOI [10.9734/ijmpcr/2021/v14i130120, 10.1109/TII.2021.3057524]