Bridged Hamiltonian Cycles in Sub-critical Random Geometric Graphs

被引:0
作者
Ganesan, Ghurumuruhan [1 ,2 ]
机构
[1] HBNI, Inst Math Sci, Chennai, Tamil Nadu, India
[2] Indian Inst Sci Educ & Res IISER, Bhopal, India
来源
SANKHYA-SERIES A-MATHEMATICAL STATISTICS AND PROBABILITY | 2023年 / 85卷 / 01期
关键词
Random geometric graphs; Hamiltonian cycles with bridges;
D O I
10.1007/s13171-021-00273-0
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we consider a random geometric graph (RGG) G on n nodes with adjacency distance r(n) just below the Hamiltonicity threshold and construct Hamiltonian cycles using additional edges called bridges. The bridges by definition do not belong to G and we are interested in estimating the number of bridges and the maximum bridge length, needed for constructing a Hamiltonian cycle. In our main result, we show that with high probability, i.e. with probability converging to one as n ->infinity, we can obtain a Hamiltonian cycle with maximum bridge length a constant multiple of r(n) and containing an arbitrarily small fraction of edges as bridges. We use a combination of backbone construction and iterative cycle merging to obtain the desired Hamiltonian cycle.
引用
收藏
页码:691 / 706
页数:16
相关论文
共 8 条
[1]   Rainbow perfect matchings and Hamilton cycles in the random geometric graph [J].
Bal, Deepak ;
Bennett, Patrick ;
Perez-Gimenez, Xavier ;
Pralat, Pawel .
RANDOM STRUCTURES & ALGORITHMS, 2017, 51 (04) :587-606
[2]   HAMILTON CYCLES IN RANDOM GEOMETRIC GRAPHS [J].
Balogh, Jozsef ;
Bollobas, Bela ;
Krivelevich, Michael ;
Muller, Tobias ;
Walters, Mark .
ANNALS OF APPLIED PROBABILITY, 2011, 21 (03) :1053-1072
[3]   Sharp threshold for hamiltonicity of random geometric graphs [J].
Diaz, Josep ;
Mitsche, Dieter ;
Perez, Xavier .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2007, 21 (01) :57-65
[4]  
Ganesan, 2021, DUAL OUT BOUND GEN P, P1
[5]   Size of the giant component in a random geometric graph [J].
Ganesan, Ghurumuruhan .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2013, 49 (04) :1130-1140
[6]   Disjoint Hamilton Cycles in the Random Geometric Graph [J].
Mueller, Tobias ;
Perez-Gimenez, Xavier ;
Wormald, Nicholas .
JOURNAL OF GRAPH THEORY, 2011, 68 (04) :299-322
[7]  
Penrose M., 2003, RANDOM GEOMETRIC GRA
[8]  
Penrose MD, 1997, ANN APPL PROBAB, V7, P340